

Chapter 5

# Regression

---

# The Prediction Problem

---

## How do we make predictions from data?

Every day, algorithms make predictions that affect your life:

- Spotify predicts which songs you'll like based on your listening history
- Insurance companies predict your risk based on demographics and behaviour
- Universities predict student success from high school grades
- Weather apps predict tomorrow's temperature from atmospheric data

## Intended Learning Outcomes

---

By the end of this chapter, you will be able to:

- Understand the equation of a straight line
- Define the least squares regression line
- Calculate slope and intercept from summary statistics
- Make predictions and recognise when they are unreliable
- Interpret slope and intercept in context
- Calculate and interpret  $R^2$
- Compute and analyse residuals
- Identify influential points
- Recognise lurking variables and ecological fallacy

PART 1

# Review of Straight Lines

---

# Quick Review: Straight Lines

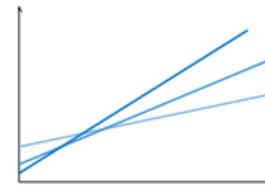
## Straight Line

A **straight line** can be described by the equation

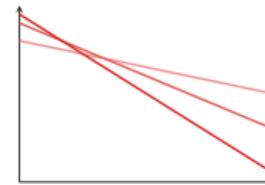
$$y = a + bx$$

where  $a$  is the  **$y$ -intercept** and  $b$  is the **slope**.

Positive Slopes ( $a > 0$ )



Negative Slopes ( $a < 0$ )



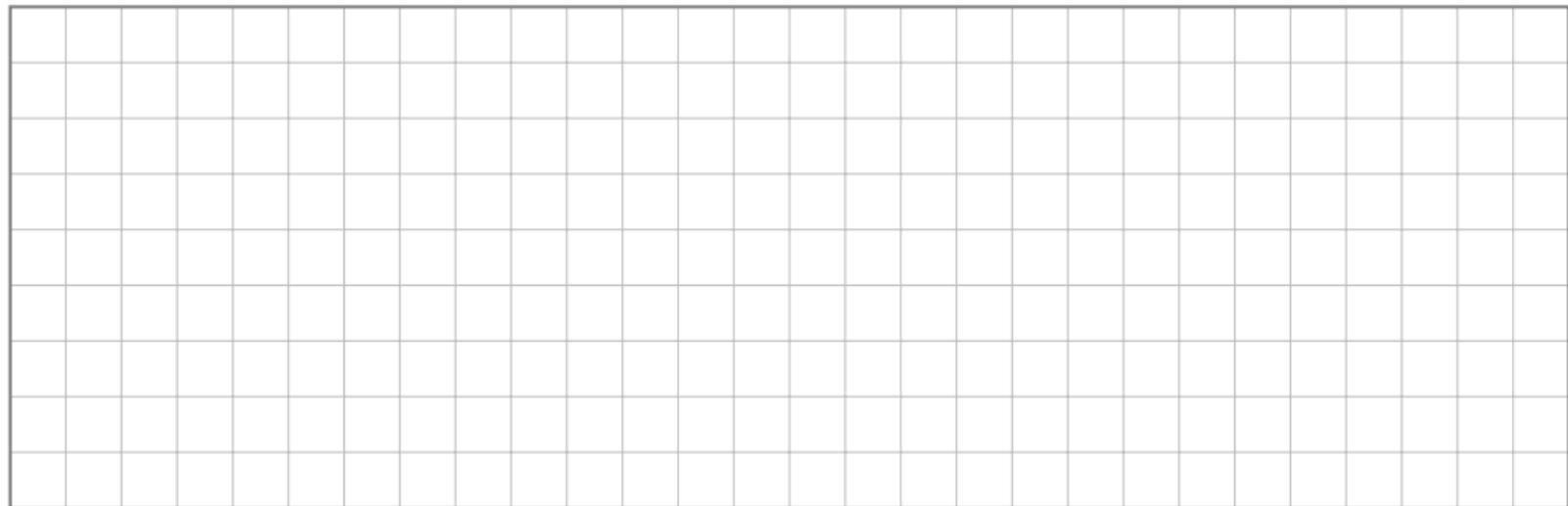
- The **slope**  $b$  tells you how much  $y$  changes when  $x$  increases by 1
- The **intercept**  $a$  is the value of  $y$  when  $x = 0$

## Example 5.1: Reviewing Lines

---

Given the points  $(2, 5)$  and  $(6, 13)$ :

- Find the equation of the line passing through these points.
- What is the value of  $y$  when  $x = 4$  on this line?



PART 2

# Regression Lines

---

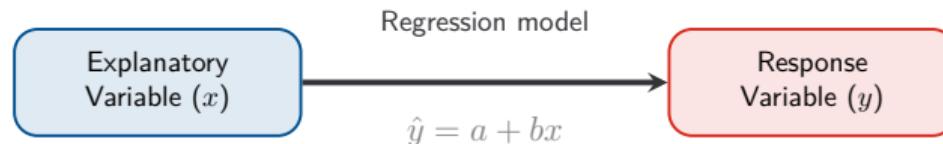
# From Scatterplots to Prediction

## Regression Line

A **regression line** is a straight line that describes how a response variable  $y$  changes as an explanatory variable  $x$  changes. It is used to **predict** the value of  $y$  based on the value of  $x$ .

## New notation:

- $\hat{y}$  = predicted value of  $y$
- $\hat{y} = a + bx$  = the regression equation



## Notation Summary

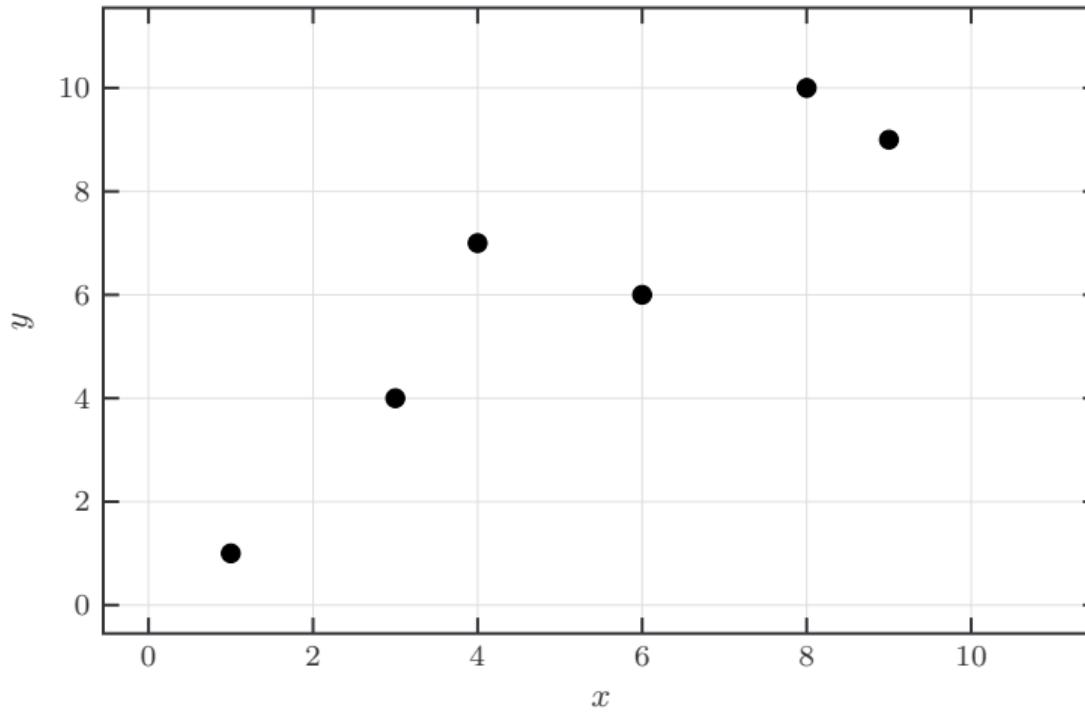
---

We use  $\hat{y}$  ("y-hat") to denote predicted values from a regression line.

| Symbol      | Meaning                                                             |
|-------------|---------------------------------------------------------------------|
| $x$         | Explanatory variable (input)                                        |
| $y$         | Response variable (observed output)                                 |
| $\hat{y}$   | Predicted value of $y$ from the regression line                     |
| $\hat{y}_i$ | Predicted value for the $i$ -th observation: $\hat{y}_i = a + bx_i$ |
| $a$         | $y$ -intercept of the regression line                               |
| $b$         | Slope of the regression line                                        |

# What should our line be?

---



PART 3

# The Least Squares Regression Line

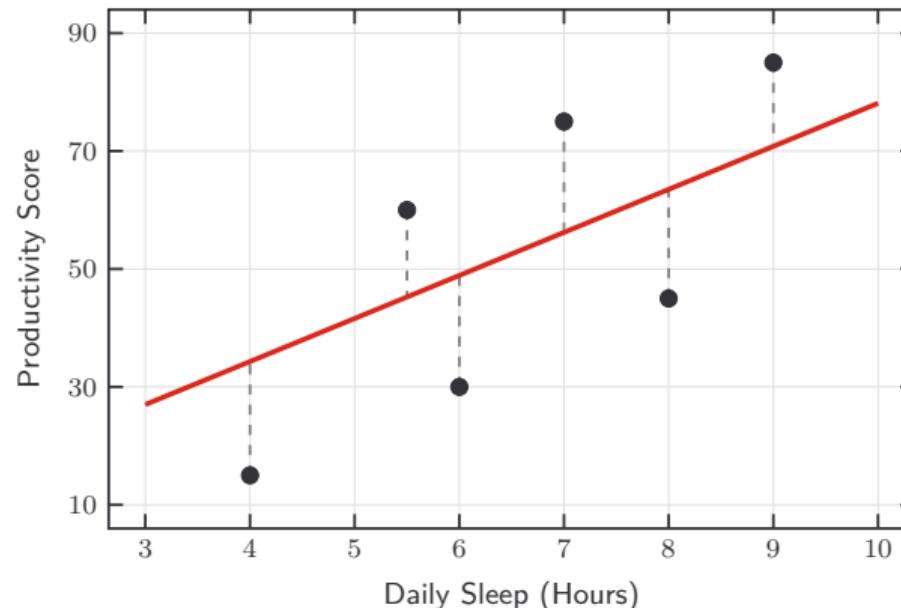
---

# Least Squares Regression Line

---

What is the least squares regression line?

The **least squares regression line** is the “best-fitting” straight line through a scatterplot.



# The Least Squares Criterion

## Least Squares Regression Line

The **least squares regression line** is the line that minimizes the sum of the **squared vertical distances** between observed values and predicted values:

$$\text{Minimize } \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

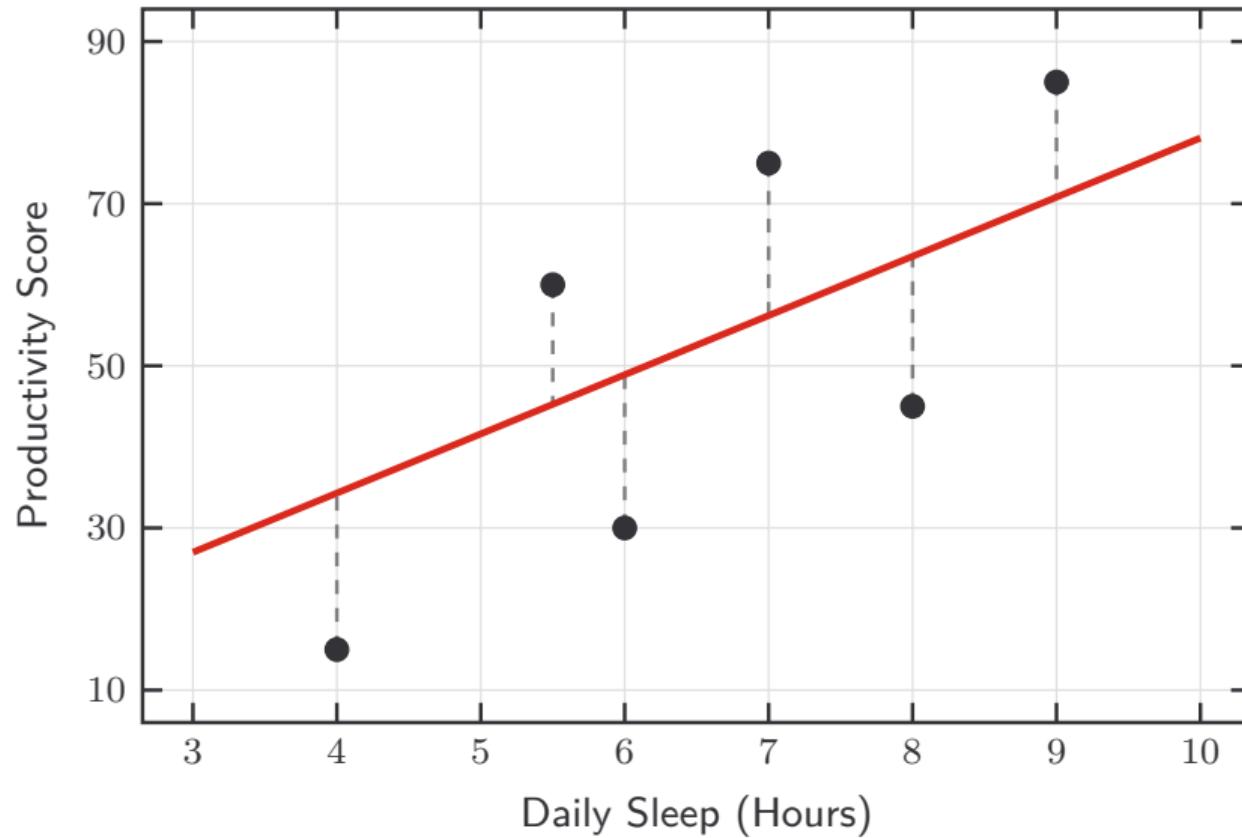


### Why square the residuals?

- Treats positive and negative errors equally (no cancellation)
- Penalizes large errors more heavily than small ones
- Yields clean mathematical formulas

# Visualising the Least Squares Idea

---



## The Formulas for the Least Squares Line

---

The least squares regression line is given by

$$\hat{y} = a + bx,$$

where

$$b = r \cdot \frac{s_y}{s_x} \quad (\text{slope})$$

$$a = \bar{y} - b\bar{x} \quad (\text{intercept})$$

## Example 5.2: Advertising and Daily Sales

---

**Context:** A small business tracks weekly ads and daily sales over 5 weeks. What is the least squares regression line of daily sales ( $y$ ) on ads per week ( $x$ )?

**Slope:**

$b =$

|                        |   |   |    |   |   |
|------------------------|---|---|----|---|---|
| Ads/week ( $x$ )       | 1 | 2 | 3  | 4 | 5 |
| Sales (\$100s) ( $y$ ) | 1 | 5 | 11 | 9 | 9 |

**Intercept:**

$a =$

Summary statistics:

- $\bar{x} = 3$ ,  $\bar{y} = 7$
- $s_x = 1.581$ ,  $s_y = 4$

**Equation:**

$\hat{y} =$

## Phraseology

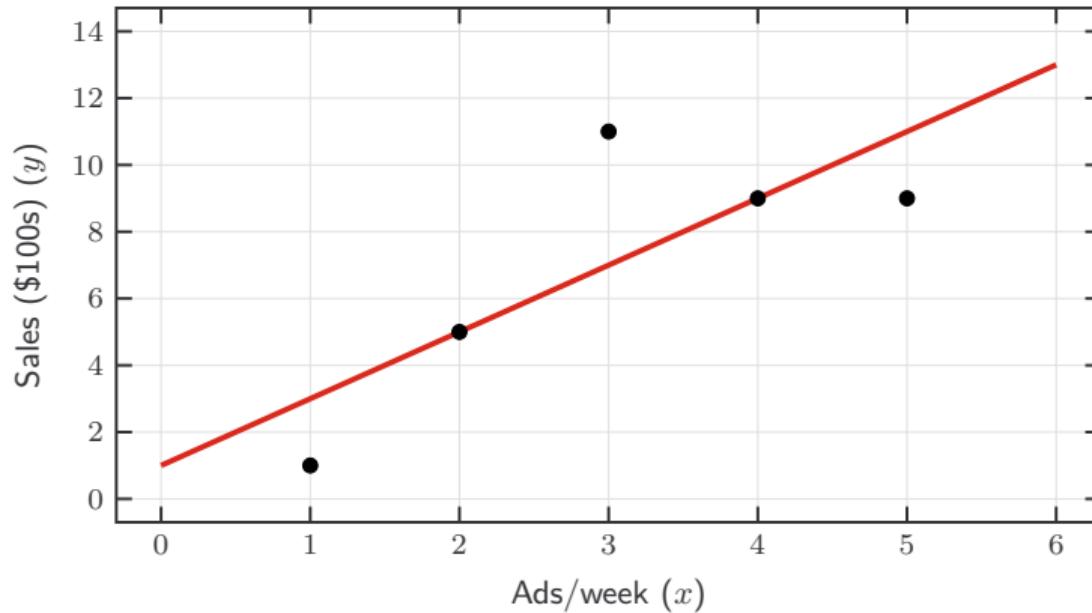
---

When we refer to the line predicting  $y$  from  $x$ , we can say any of the following:

- The regression of  $y$  on  $x$
- The least squares regression line predicting  $y$  from  $x$
- The least squares regression line with  $y$  as the response and  $x$  as the explanatory variable
- The line with  $y$  as the dependent variable and  $x$  as the independent variable
- The line modeling  $y$  as a function of  $x$
- The line regressing  $y$  against  $x$

## Advertising and Daily Sales: Visualization

---

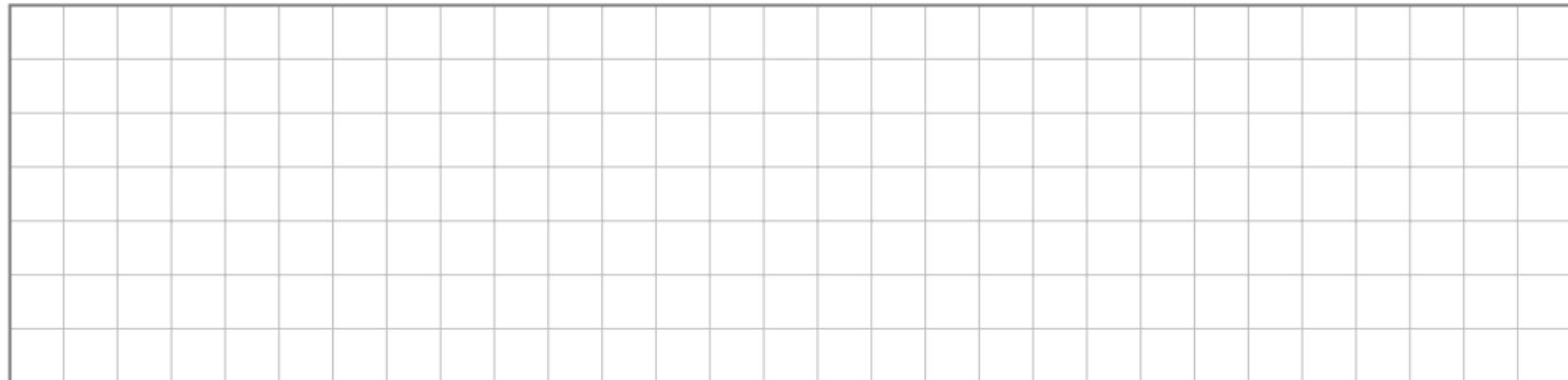


## Example 5.3: Spotify Playlist Data

---

**Context:** Data from 200 songs released in 2024. Find the regression line to predict total streams (millions) from the number of playlists (thousands) a song appears on. Summary statistics:

- $\bar{x} = 18.5$  thousand playlists
- $\bar{y} = 142.3$  million streams
- $s_x = 12.4$ ,  $s_y = 98.7$
- $r = 0.78$



# Understanding the Slope Formula

---

$$b = r \cdot \frac{s_y}{s_x}$$

What does this formula tell us?

- The **sign** of  $b$  matches the sign of  $r$ 
  - Positive correlation  $\Rightarrow$  positive slope
  - Negative correlation  $\Rightarrow$  negative slope
- The **magnitude** depends on how spread out  $y$  is relative to  $x$ 
  - If  $s_y > s_x$ : the slope is steeper than  $r$
  - If  $s_y < s_x$ : the slope is flatter than  $r$

# Understanding the Intercept Formula

---

$$a = \bar{y} - b\bar{x}$$

## What does this formula tell us?

- The regression line **always passes through** the point  $(\bar{x}, \bar{y})$ 
  - This is the “balance point” of the data
  - Substituting  $x = \bar{x}$  gives  $\hat{y} = a + b\bar{x} = \bar{y}$
- The intercept  $a$  adjusts the line vertically to ensure it passes through  $(\bar{x}, \bar{y})$

PART 4

# Interpreting the Coefficients

---

# Interpreting the Slope

## Interpretation of Slope

The **slope**  $b$  represents the **predicted change** in  $y$  for a **one-unit increase** in  $x$ .

“For each additional [unit of  $x$ ], the predicted [response variable] changes by  $b$  [units of  $y$ ].”

**Advertising example:** For  $\hat{y} = 1 + 2x$ :

**Spotify example:** For  $\hat{y} = 27.4 + 6.21x$ :

# Interpreting the Intercept

---

## Interpretation of Intercept

The **intercept**  $a$  represents the predicted value of  $y$  when  $x = 0$ .

“When [explanatory variable] is zero, the predicted [response variable] is  $a$  [units].”

**Spotify example:** “A song on zero playlists would get 27.4 million streams.”

**⚠ Caution:** This interpretation is only meaningful if  $x = 0$  makes sense in context.

## Example 5.4: Interpreting a House Price Model

---

**Context:** A model predicts house prices (\$000s) from size (sq ft):

$$\hat{y} = 45 + 0.12x$$

Interpret the slope and intercept.

PART 5

# Predictions

---

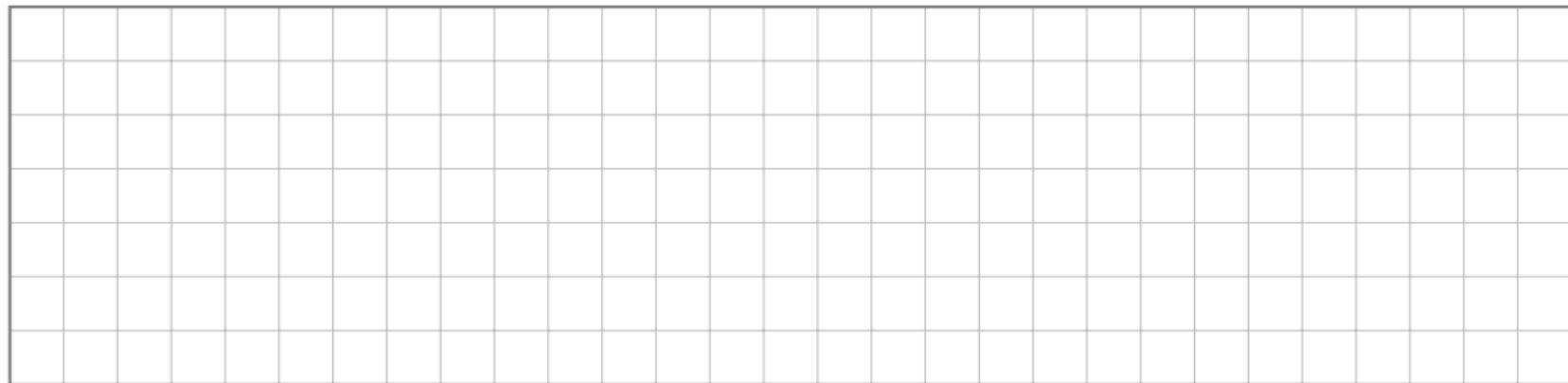
## How Do We Use the Regression Line?

---

To make predictions of the response variable  $y$  based on new values of the explanatory variable  $x$ .

**Advertising example:**  $\hat{y} = 1 + 2x$

What is the expected daily sales if the business runs 7 ads per week?

A large, empty grid consisting of 20 columns and 10 rows of small squares, intended for students to work out the calculation of the expected daily sales.

## Making Predictions with Regression

1. Compute the regression equation  $\hat{y} = a + bx$  based on the data
2. Substitute the given  $x$ -value into the equation
3. Calculate  $\hat{y}$  (the predicted value)

## Example 5.3: Spotify Playlist Data (Continued)

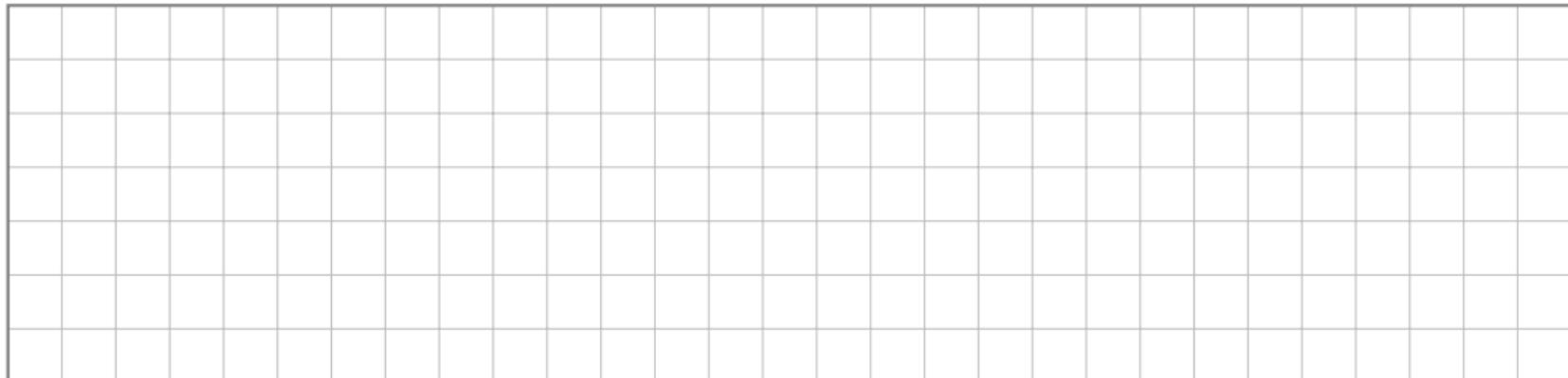
---

**Context:** Data from 200 songs released in 2024. We want to predict total streams (millions) from the number of playlists (thousands) a song appears on.

Recall that the regression equation is:

$$\hat{y} = 27.4 + 6.21x$$

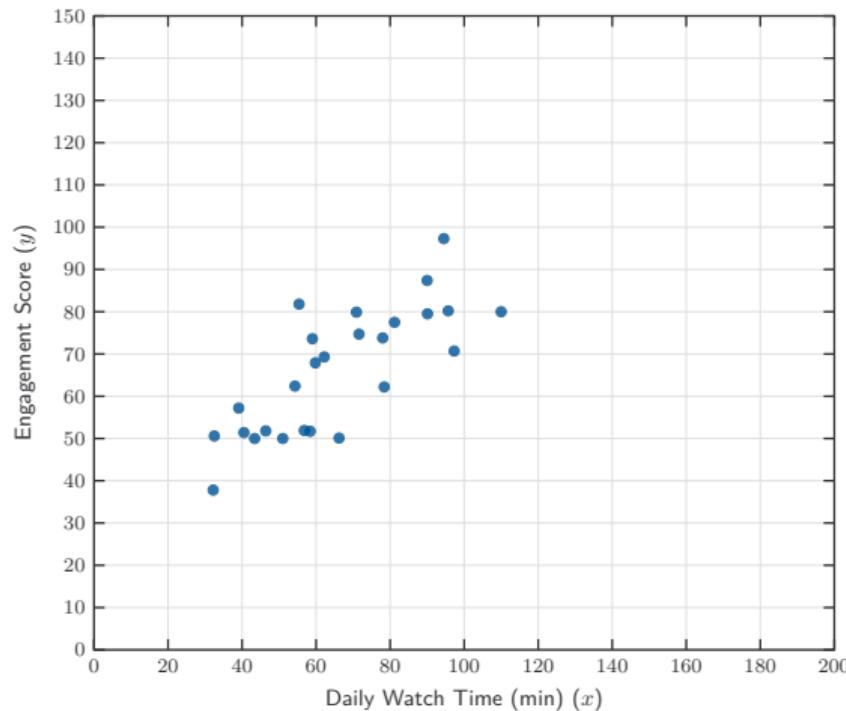
- a) Find the predicted number of total streams for a song on 10,000 playlists.
- b) Find the predicted number of total streams for a song on 1,344 playlists.

A large, empty grid consisting of 20 columns and 15 rows of small squares, intended for students to use for working out calculations related to the example.

## Example 5.5: Netflix Watch Time and Engagement

---

**Context:** Netflix analyzes subscriber data to predict monthly engagement score (0–100) from average daily watch time (minutes).



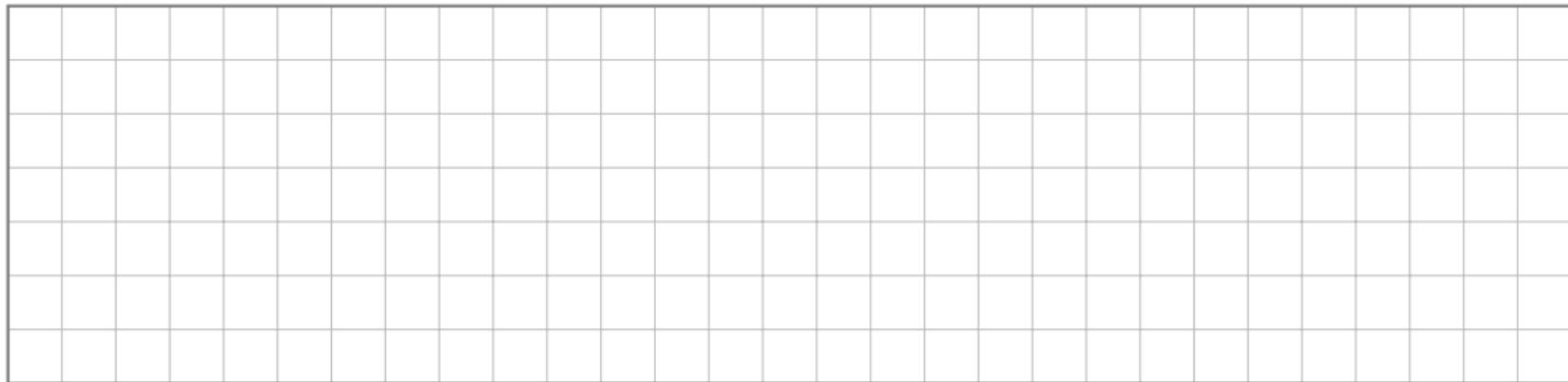
## Example 5.5: Netflix Watch Time and Engagement (Continued)

---

**Context:** Netflix analyzes subscriber data to predict monthly engagement score (0–100) from average daily watch time (minutes). Regression line:  $\hat{y} = 28 + 0.59x$

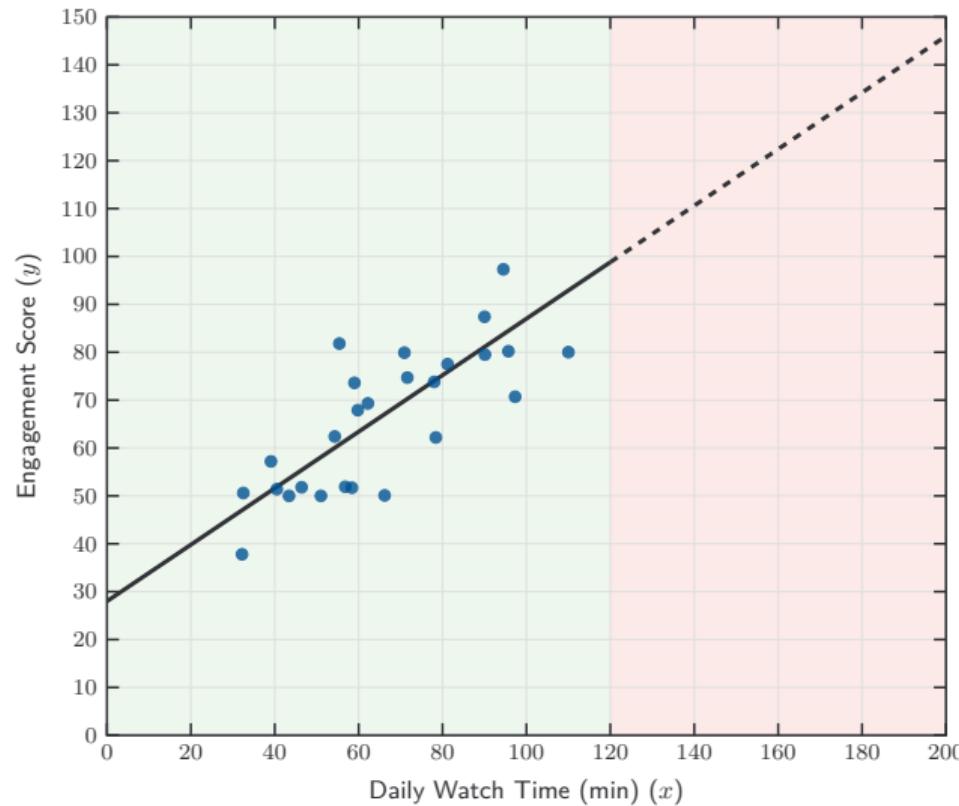
Predict the engagement score for

- (a) a subscriber watching 60 min/day, and
- (b) a subscriber watching 180 min/day.

A large, empty grid consisting of 10 columns and 10 rows of small squares, intended for students to use for working out their calculations.

## Example 5.5: Netflix Watch Time and Engagement

---

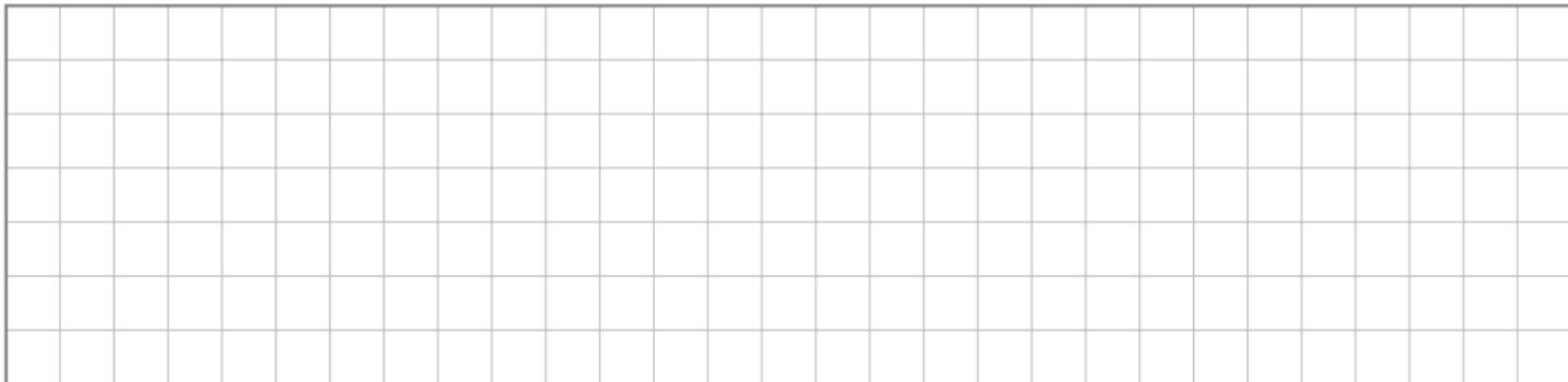


## Example 5.6: Children's Height and Age

---

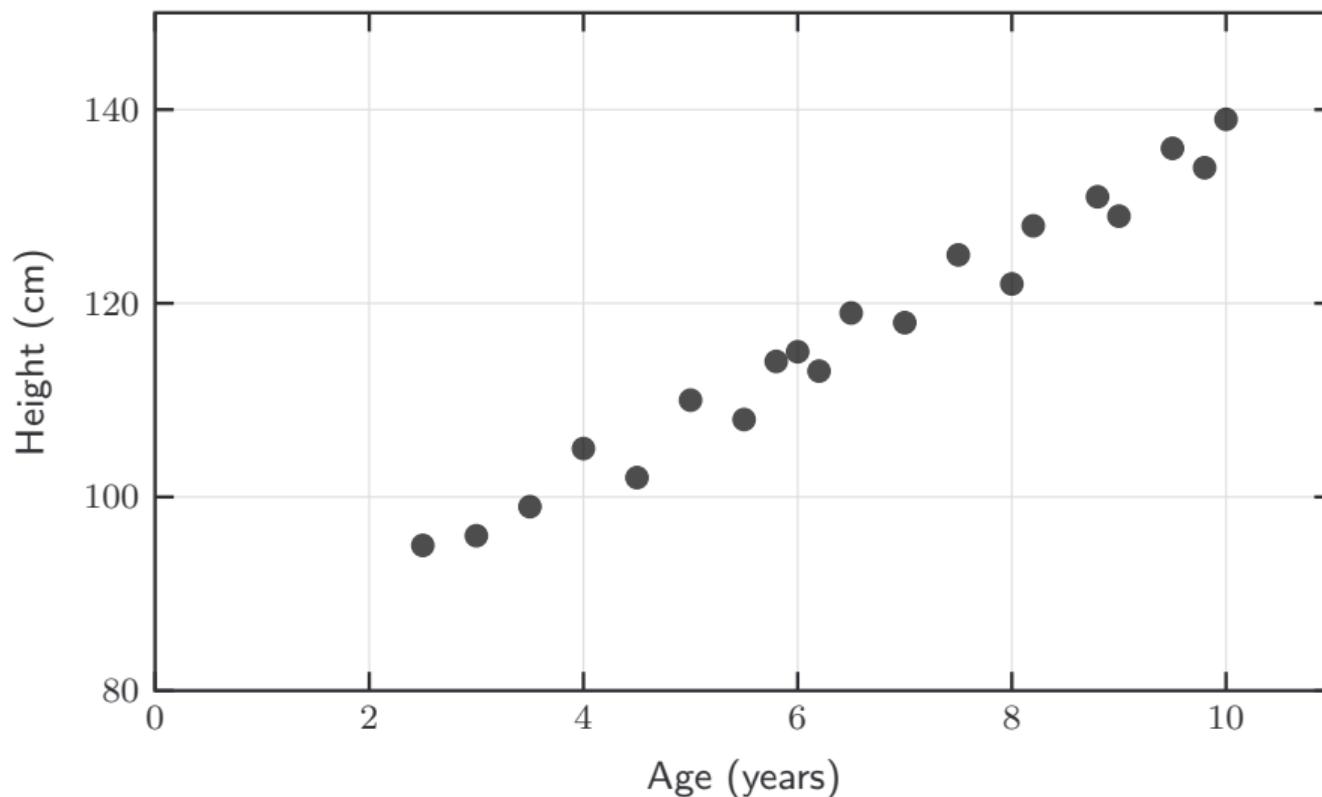
**Context:** A pediatrician models the relationship between children's height (cm) and age (years) for patients aged 2–10 years. Data from 180 children shows:  $\bar{x} = 6.2$  years,  $\bar{y} = 115.4$  cm,  $s_x = 2.4$ ,  $s_y = 14.8$ ,  $r = 0.92$ .

- (a) Predict the height of a 3-year-old.
- (b) Predict the height of a 7-year-old child.
- (c) Predict the height of a 33-year-old.



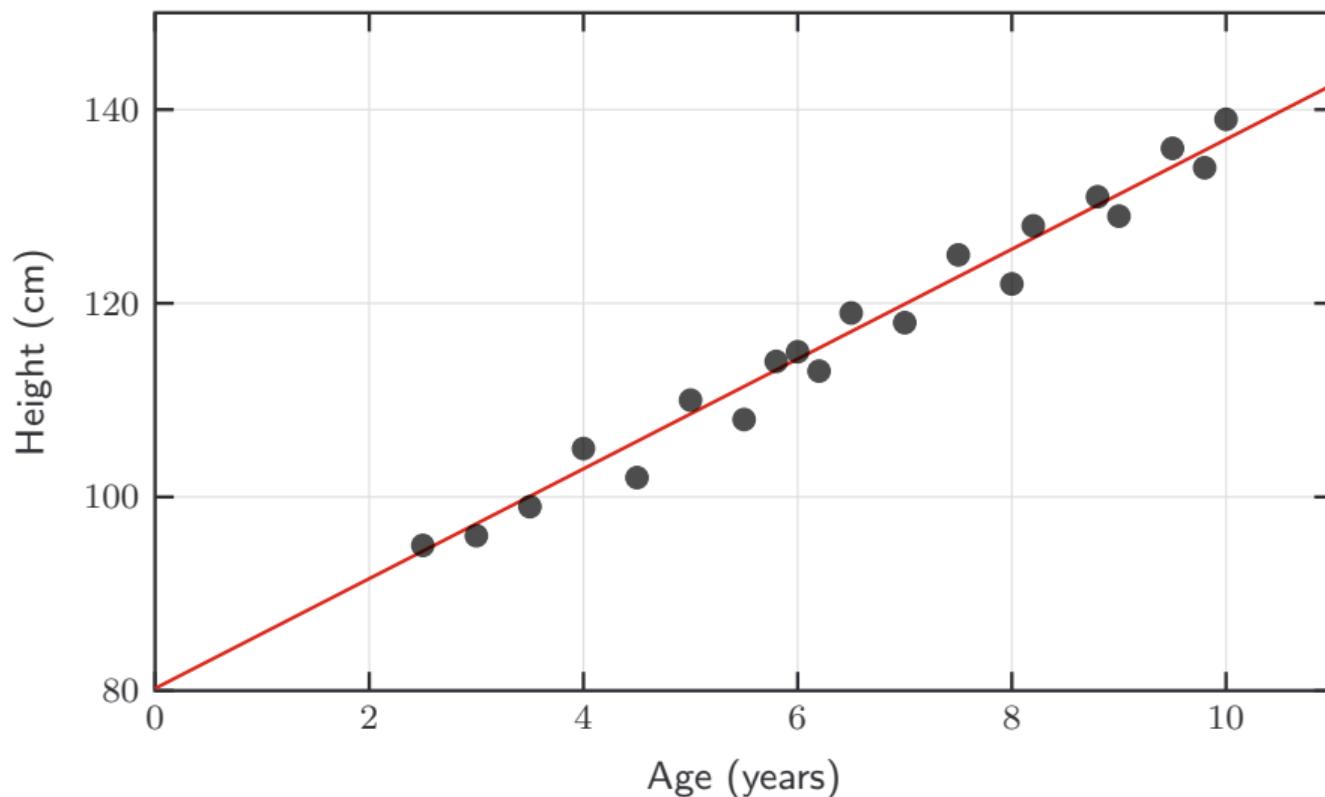
## Example 5.6: Children's Height and Age

---



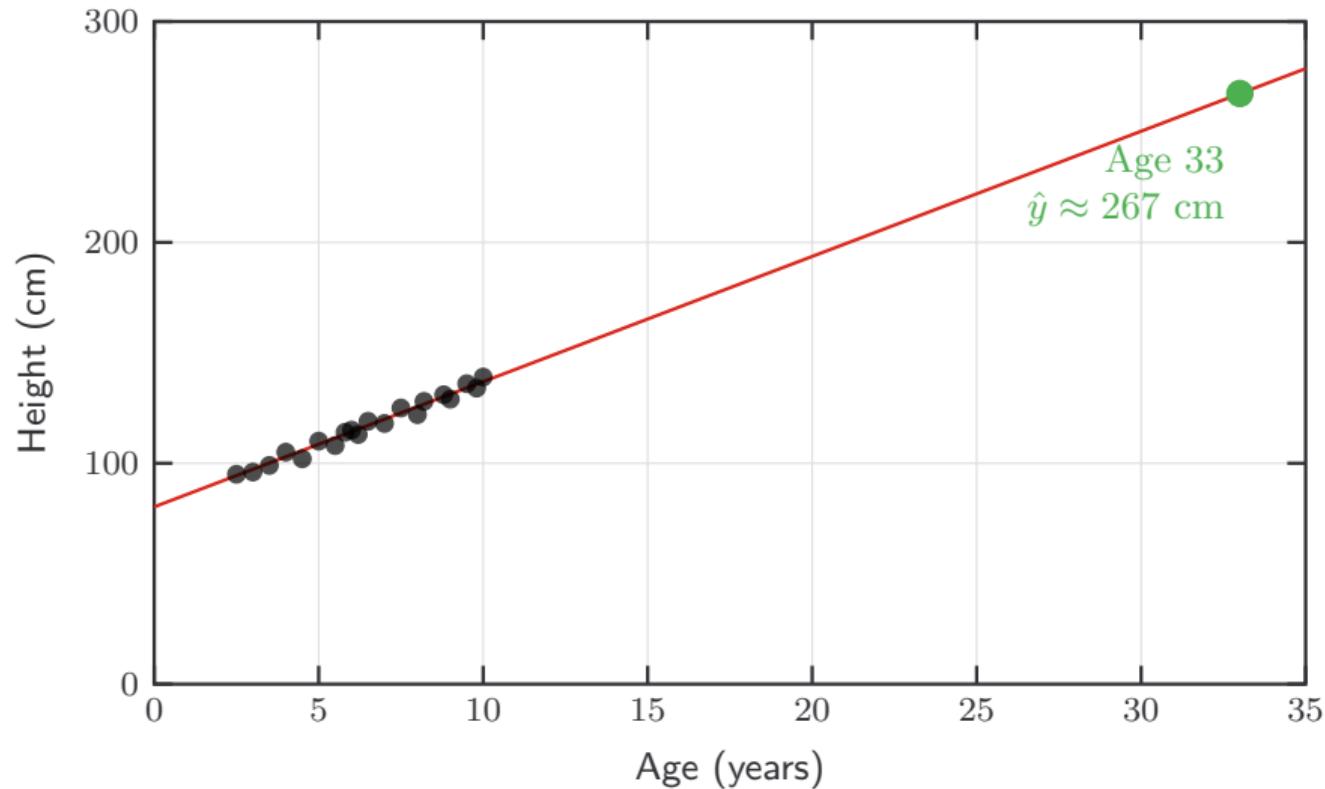
## Example 5.6: Children's Height and Age

---



## Example 5.6: Children's Height and Age

---



## Limitations of Predictions

---

Predictions are not trustworthy if

- They are based on **extrapolation** (outside the data range)
- The predicted values are **inadmissible** in context (e.g., negative prices)

PART 6

# Diagnostics

---

# The Coefficient of Determination

## Coefficient of Determination

The **coefficient of determination**  $R^2$  is the **squared correlation** between  $x$  and  $y$ :

$$R^2 = r^2$$

The value  $R^2$  always lies between 0 and 1.

The coefficient of determination  $R^2$  represents the **proportion of variation** in the response variable  $y$  that is **explained** by the explanatory variable  $x$  using the regression line.

 **Key Point:** Higher  $R^2$  means a better fit of the regression line to the data.

## Example 5.7: Computing $R^2$

---

**Advertising example:** We found  $r = 0.791$ . What is  $R^2$ ?

$$R^2 =$$

**Interpretation:**

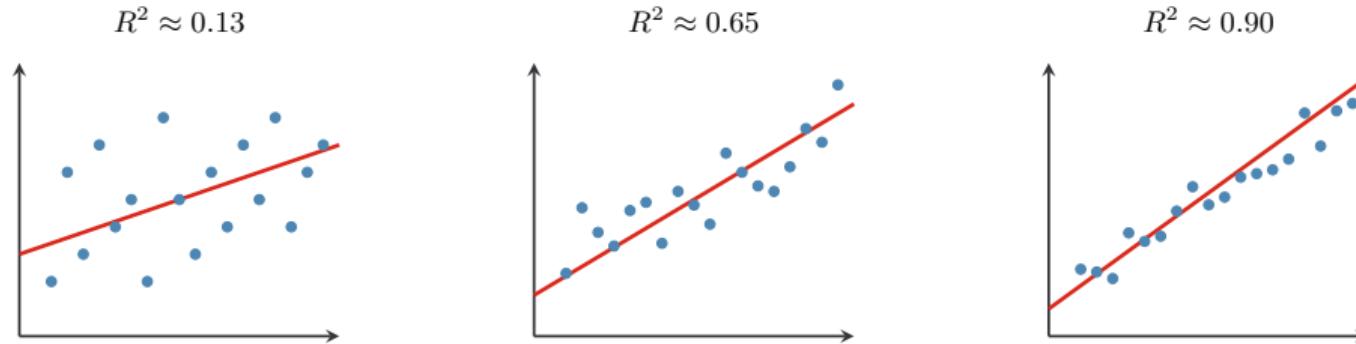
**Spotify example:** We found  $r = 0.78$ . What is  $R^2$ ?

$$R^2 =$$

**Interpretation:**

# Visualising Different $R^2$ Values

---



**Intuition:** Higher  $R^2$  means points cluster more tightly around the line.

## Residual

A **residual** is the difference between an observed value and its predicted value from the regression line:

$$e_i = y_i - \hat{y}_i$$

## Interpretation:

- **Positive residual:** Actual value is **above** the line (model **underestimates**)
- **Negative residual:** Actual value is **below** the line (model **overestimates**)
- **Zero residual:** Perfect prediction (point lies on line)

 **Key Point:** Residuals tell you how wrong each prediction is, and in which direction.

## Example 5.8: Computing Residuals

---

**Context:** A bookstore tracks the number of hours open per day ( $x$ ) and daily revenue in hundreds of dollars ( $y$ ) over 5 days. The regression line is  $\hat{y} = 2 + 3x$ .

| Hours ( $x$ ) | Revenue ( $y$ ) | Predicted ( $\hat{y}$ ) | Residual ( $e_i$ ) |
|---------------|-----------------|-------------------------|--------------------|
| 4             | 15              |                         |                    |
| 6             | 19              |                         |                    |
| 8             | 26              |                         |                    |
| 10            | 31              |                         |                    |
| 12            | 39              |                         |                    |

## Sum of Residuals is Zero



### Note

The least squares method finds the line that minimizes  $\sum(y_i - \hat{y}_i)^2$ . Calculus shows that for this minimum, the sum of residuals must be zero:

$$\sum_{i=1}^n (y_i - \hat{y}_i) = 0$$

This means the average residual is also zero, which implies:

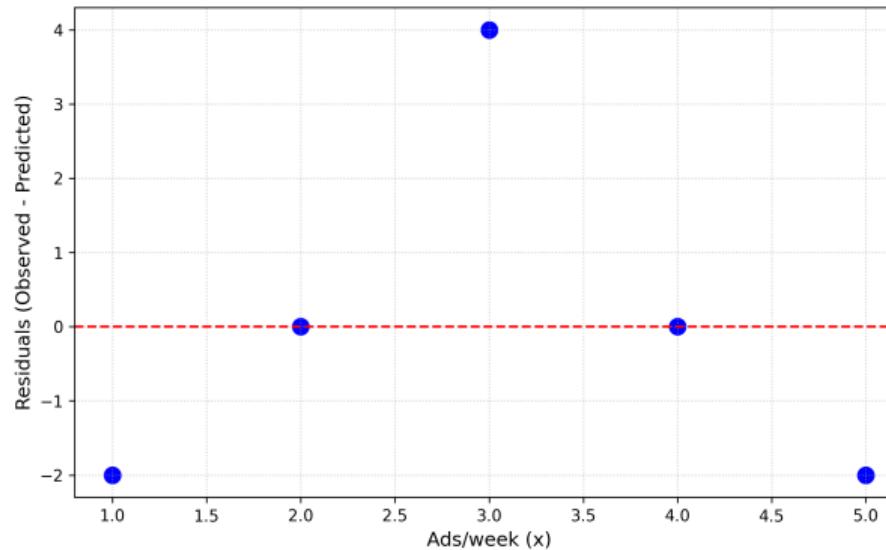
$$\bar{y} = \bar{\hat{y}} = a + b\bar{x}$$

 **Key Point:** This is why the regression line **always** passes through  $(\bar{x}, \bar{y})$ .

# Residual Plots: Checking Your Model

## Residual Plot

A **residual plot** shows residuals ( $y$ -axis) versus (fitted) predicted values or explanatory variable ( $x$ -axis).

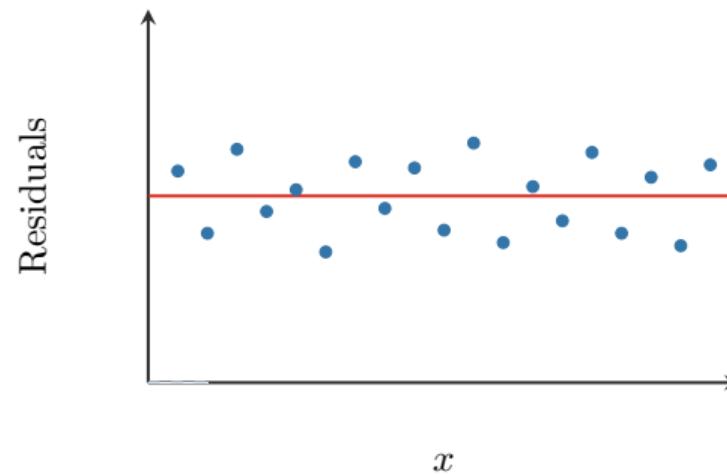


## Residual Plots

---

If the model is reasonable, then the residual plots would show:

- No systematic pattern
- Points randomly distributed around zero
- Constant spread across all  $x$  values

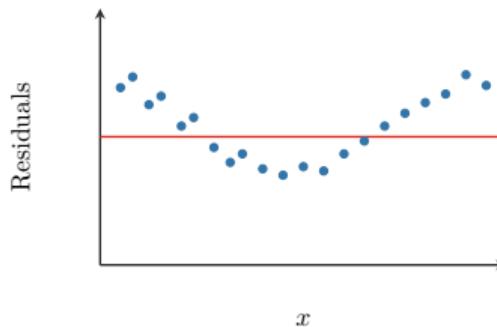
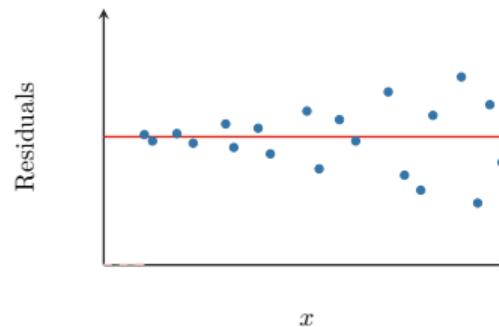
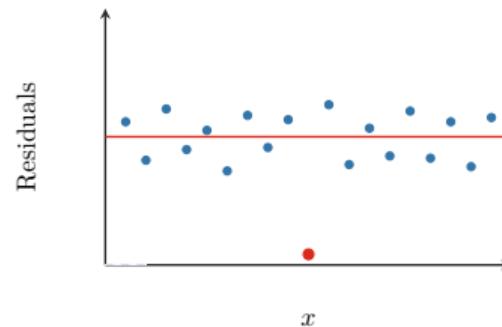


# Residual Plots

---

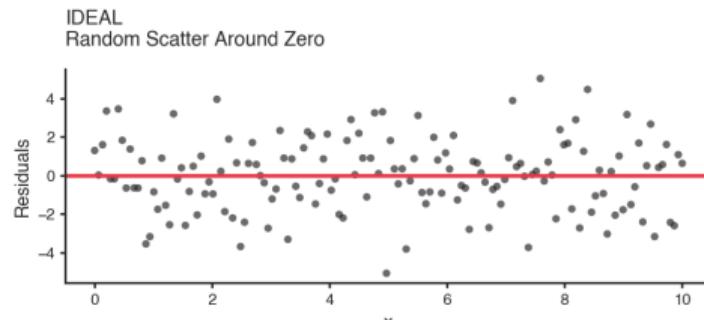
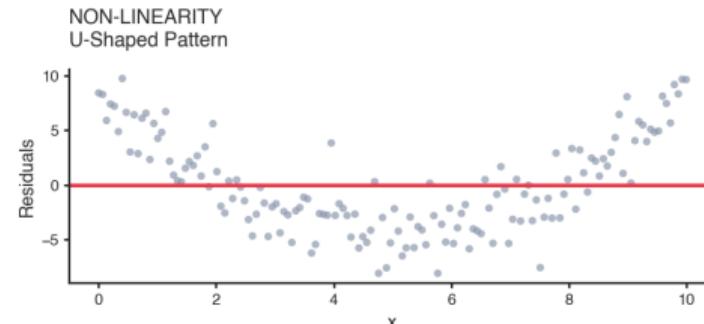
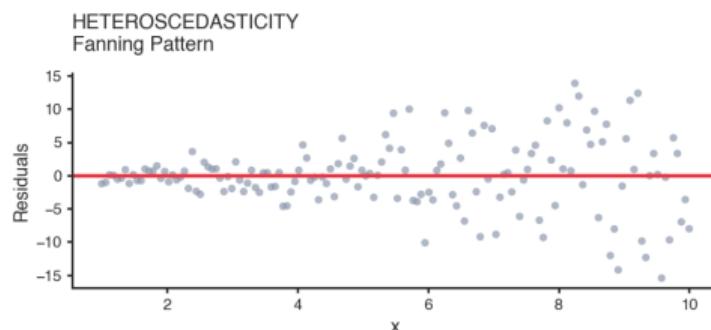
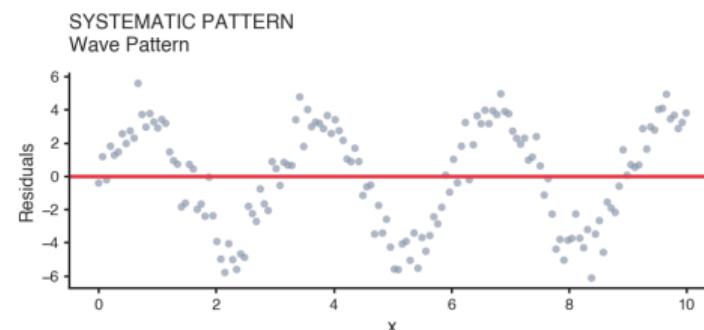
Otherwise, we might see:

- Curved patterns (non-linearity)
- Funnel shapes (non-constant variance)
- Large residuals (potential outliers)



# Residual Plots

---



PART 7

# Outliers and Regression

---

## Outliers and Regression

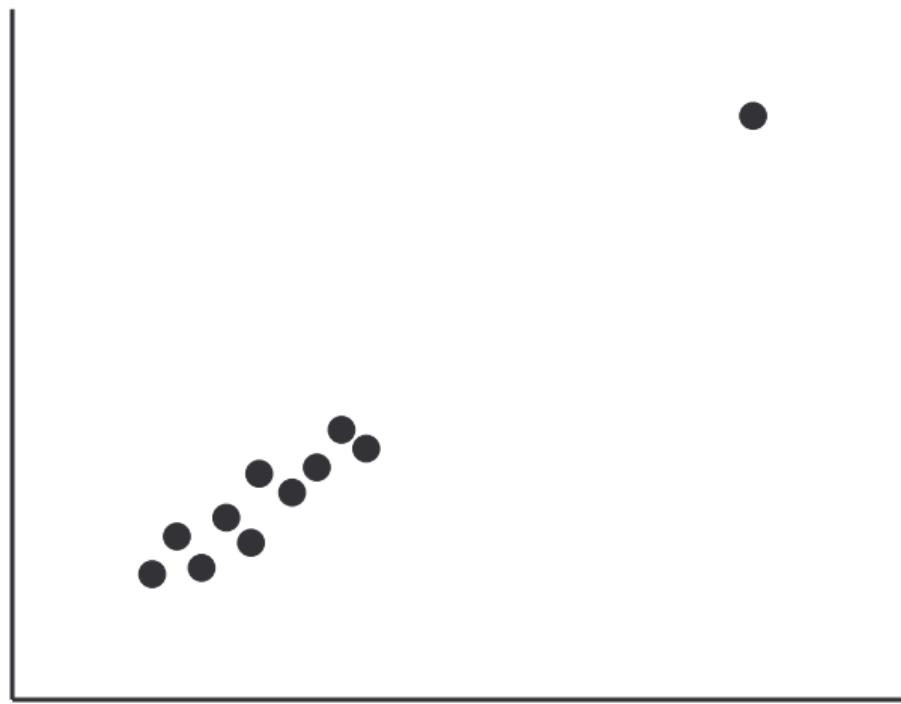
---

Certain types of outliers can substantially affect regression models in two ways:

- Position: They can pull the regression line toward themselves, changing both slope and intercept
- Strength: They can weaken the correlation (reduce  $R^2$ ), making predictions less reliable

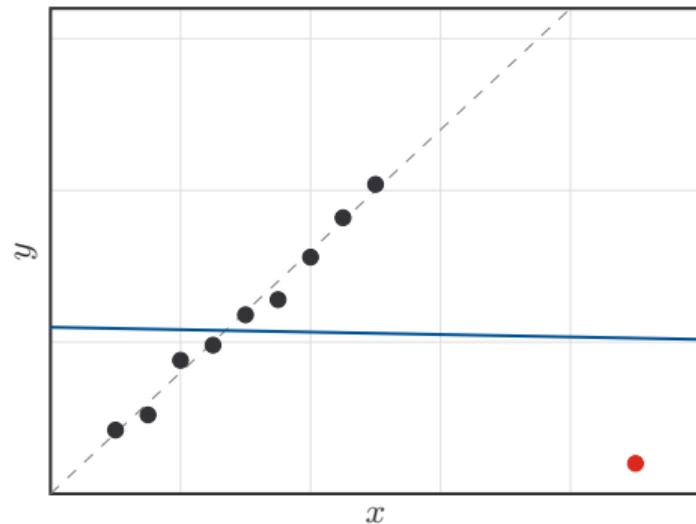
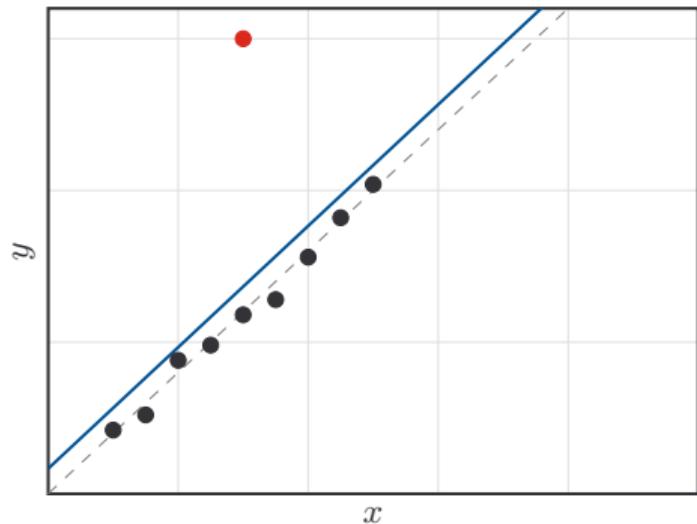
## Impact on Regression Model

---



## Types of Influential Points

---



# What Makes an Outlier Influential?

---

## Influential Point

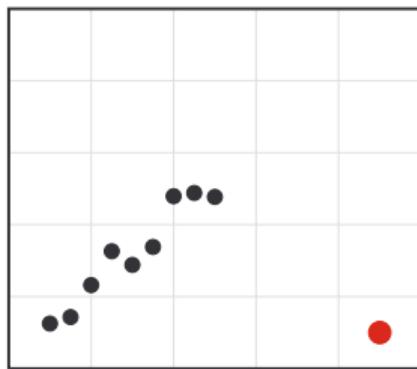
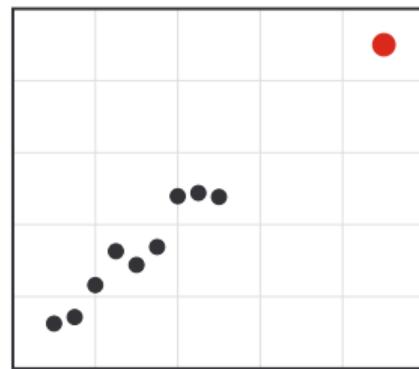
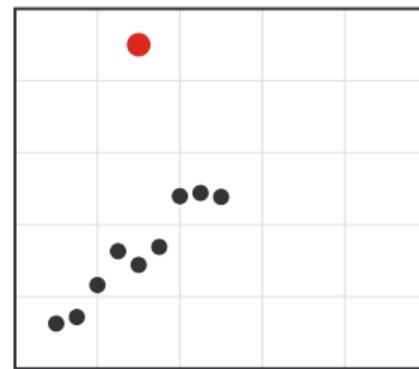
An **influential point** is an observation that, if removed, would substantially change the regression line (slope, intercept, or both).

Generally speaking, this is a point that has an extreme value of  $x$  with a value of  $y$  that deviates from the regression line.

## Example 5.9: Identifying Influential Points

---

For each plot, indicate if the highlighted point is influential.



PART 8

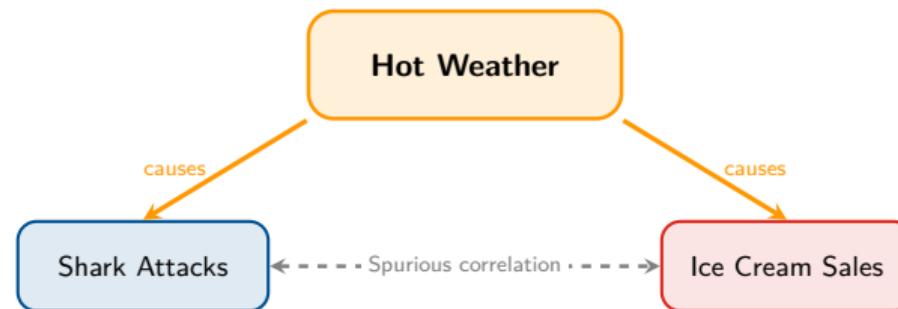
# Pitfalls

---

# Lurking Variables

## Lurking Variable

A **lurking variable** (or **confounding variable**) is an unobserved variable that influences **both** the explanatory and response variables, potentially creating a spurious association.



# Correlation Does Not Imply Causation

---

**⚠ Caution:** A strong relationship between  $x$  and  $y$  does **not** mean that  $x$  causes  $y$ . There may be lurking variables creating a spurious association.

## Famous examples of spurious correlations:

- Ice cream sales and drowning deaths (*lurking: summer weather*)
- Shoe size and reading ability in children (*lurking: age*)
- Number of firefighters and fire damage (*lurking: size of fire*)
- Nicolas Cage films and swimming pool drownings (*lurking: nothing, just coincidence!*)

# The Ecological Fallacy

---

## Ecological Fallacy

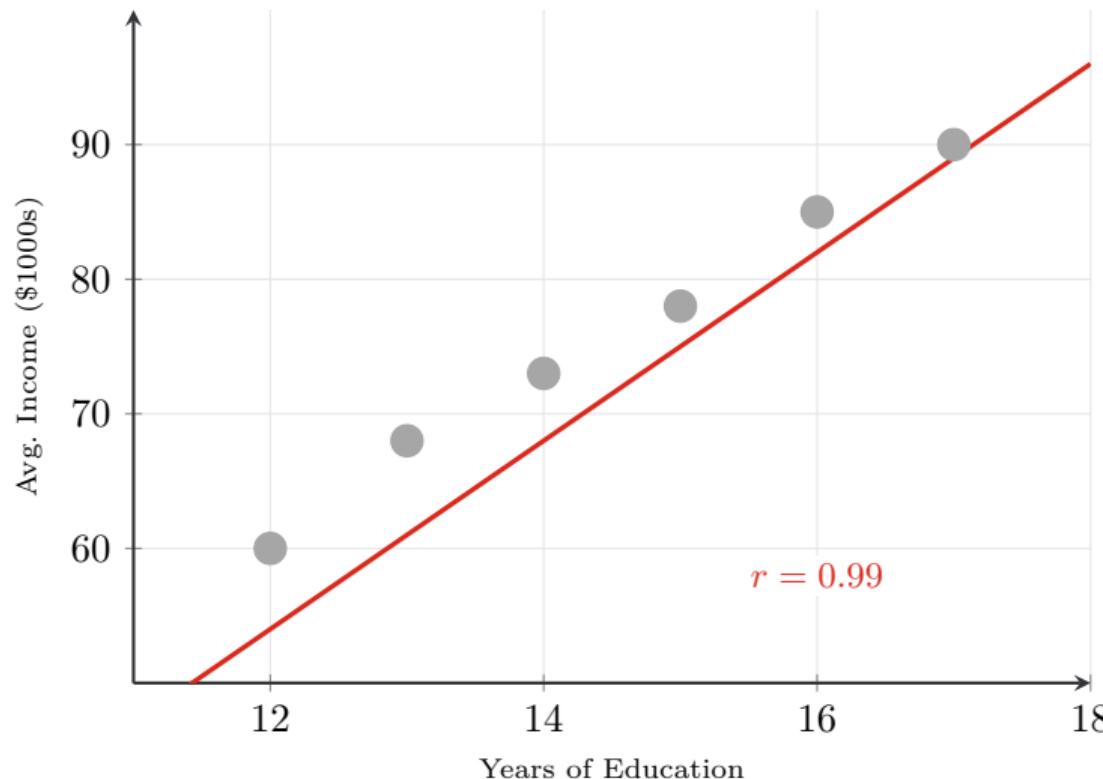
The **ecological fallacy** occurs when inferences about **individual** behaviour are incorrectly drawn from **aggregate** (group-level) data.

This is a special case of Simpson's paradox, which we will discuss in the next chapter.

## Example 5.10: Education and Income

---

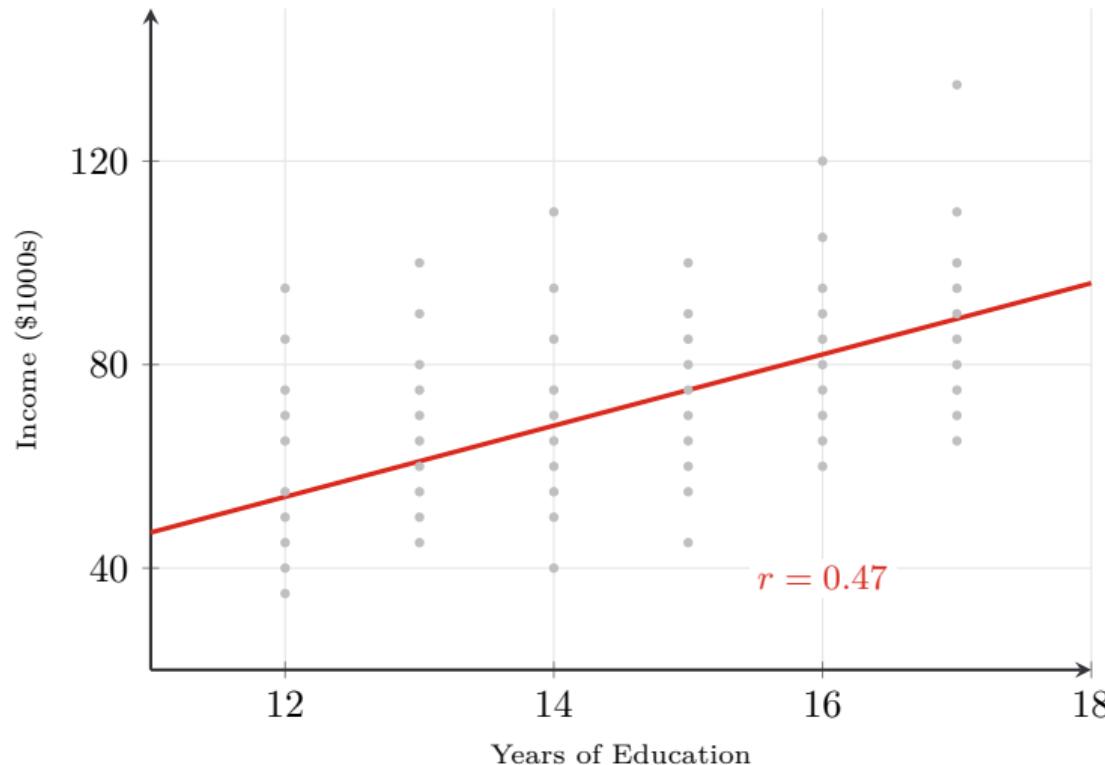
Aggregate (group averages)



## Example 5.10: Education and Income (Continued)

---

Individual level



# Chapter Summary: Core Formulas

---

## Least Squares Regression Line

$$\hat{y} = a + bx$$

where:

- **Slope:**  $b = r \cdot \frac{s_y}{s_x}$
- **Intercept:**  $a = \bar{y} - b\bar{x}$

## Measuring Model Quality

- **Residual:**  $e_i = y_i - \hat{y}_i$
- **Coefficient of determination:**  $R^2 = r^2$

# Chapter Summary: Interpretation

---

## Understanding the Coefficients

**Slope  $b$ :** Change in predicted  $y$  for each one-unit increase in  $x$

- “For each additional [unit of  $x$ ], we predict  $y$  to change by  $b$  [units].”

**Intercept  $a$ :** Predicted value of  $y$  when  $x = 0$

- Only meaningful if  $x = 0$  makes sense in context
- Often just a mathematical anchor for the line

**Coefficient of determination  $R^2$ :** Proportion of variation in  $y$  explained by  $x$

- “ $R^2 \times 100\%$  of the variation in [response] is explained by [explanatory variable].”

# Chapter Summary: Making Predictions

---

## How to Predict

1. Calculate regression equation  $\hat{y} = a + bx$
2. Substitute the given value of  $x$
3. Calculate  $\hat{y}$  (the predicted value)

## When Predictions Fail

- **Extrapolation:** Predicting outside the range of observed  $x$  values
- **Inadmissible predictions:** Results that are impossible or nonsensical in context
  - Examples: negative prices, scores above 100%, heights of 300 cm

# Chapter Summary: Model Diagnostics

---

## Checking the Model

Residual plots should show:

- No systematic patterns
- Random scatter around zero
- Constant spread across all  $x$  values

Watch out for:

- Curved patterns (suggests non-linear relationship)
- Funnel shapes (non-constant variance)
- Large isolated residuals (potential outliers)

Influential points:

- extreme  $x$  values that deviate from the trend in  $y$
- dramatically change slope and intercept

# Chapter Summary: Common Pitfalls

---

## Correlation $\neq$ Causation

- A strong relationship between  $x$  and  $y$  does not mean  $x$  causes  $y$
- **Lurking variables** can create spurious associations
- Example: Ice cream sales and drowning deaths (lurking: summer weather)

## Ecological Fallacy

- Group-level patterns may not hold at the individual level
- Example: Countries with higher average education may have higher average income, but within countries the pattern could reverse

# Additional Practice Problems

---

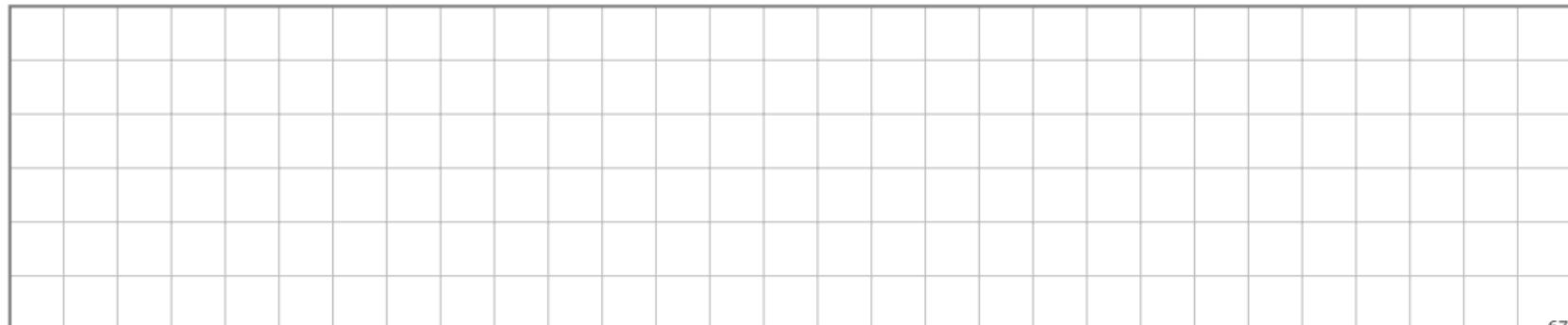
## Example 5.11: Fast Food Spending

---

**Context:** A study of 50 college students examined the relationship between weekly fast food spending (\$) and GPA. Summary statistics:

- $\bar{x} = 15$  dollars,  $\bar{y} = 3.2$  GPA
- $s_x = 8.5$ ,  $s_y = 0.6$
- $r = -0.68$

- Calculate the slope and intercept of the regression line.
- Write the regression equation  $\hat{y} = a + bx$ .
- Interpret the slope in context.
- Predict the GPA of a student who spends \$25 per week on fast food.



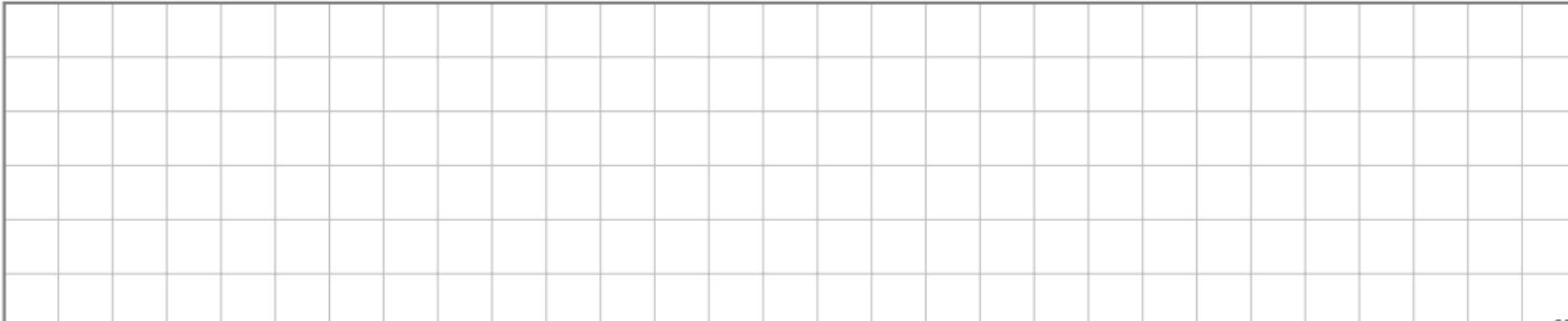
## Example 5.12: Sleep and Test Performance

---

**Context:** A teacher tracks student sleep hours (night before exam) and exam scores (0–100) for 40 students. Summary statistics:

- $\bar{x} = 7$  hours,  $\bar{y} = 72$  points
- $s_x = 1.8$ ,  $s_y = 12.5$
- $r = 0.82$

- a) Find the regression equation.
- b) A student slept 9 hours. Predict their exam score.
- c) Calculate and interpret  $R^2$ .
- d) Is this prediction reliable? Why or why not?



A large grid of 10 columns and 10 rows, intended for students to work out the regression equation on.

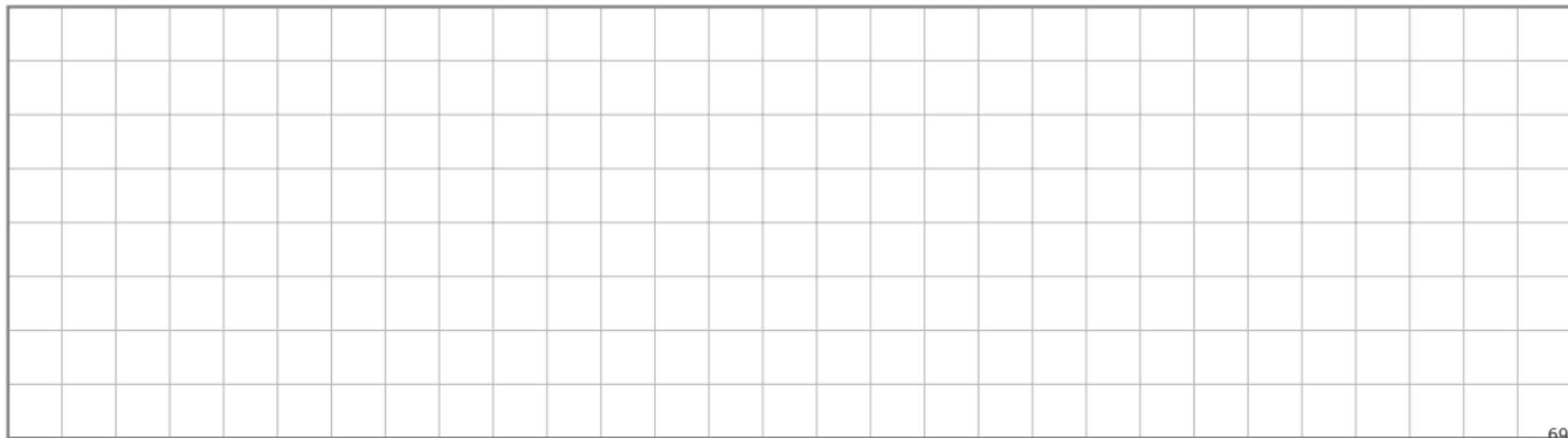
## Example 5.13: Temperature and Coffee Sales

---

**Context:** A coffee shop records daily temperature ( $^{\circ}\text{C}$ ) and coffee sales (cups sold) over 60 days. The regression line is:

$$\hat{y} = 280 - 8.5x$$

- a) Interpret the slope.
- b) Interpret the intercept. Does it make practical sense?
- c) Predict sales when it's  $20^{\circ}\text{C}$ .
- d) Predict sales when it's  $-5^{\circ}\text{C}$ . Is this a reliable prediction? Why?



## Example 5.14: Computing Residuals

---

**Context:** Using the fast food/GPA regression line  $\hat{y} = 3.8 - 0.04x$ , compute residuals for four students:

| Student | Spending ( $x$ ) | GPA ( $y$ ) | Predicted ( $\hat{y}$ ) | Residual ( $e_i$ ) |
|---------|------------------|-------------|-------------------------|--------------------|
| A       | 10               | 3.5         |                         |                    |
| B       | 20               | 3.0         |                         |                    |
| C       | 5                | 3.6         |                         |                    |
| D       | 30               | 2.8         |                         |                    |

Which student's GPA does the model overestimate? Underestimate?

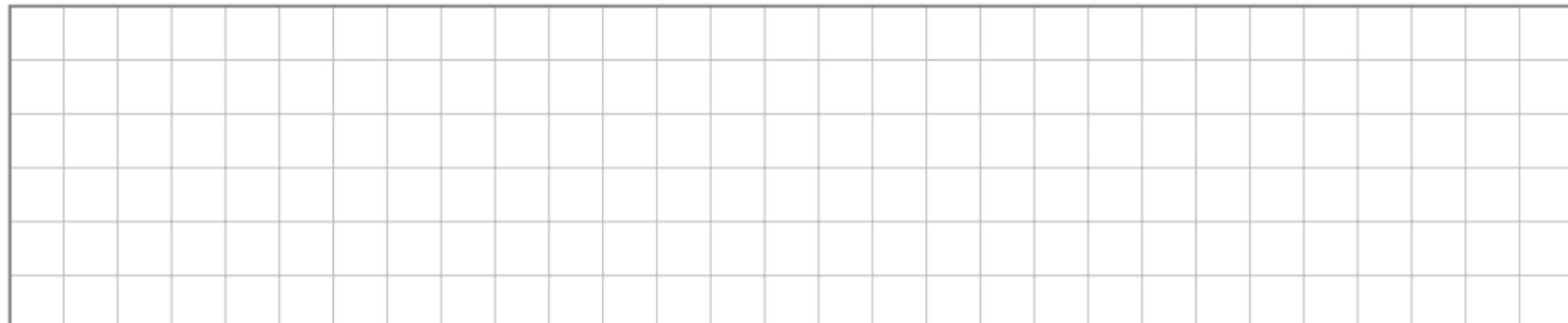
## Example 5.15: Putting It Together

---

**Context:** A researcher studying 100 athletes measures training hours per week ( $x$ ) and performance score (0–100) ( $y$ ). Results:

- Regression equation:  $\hat{y} = 40 + 2.1x$
- $R^2 = 0.71$
- Data range: 5–25 training hours
- Three athletes have residuals of  $-8$ ,  $+5$ , and  $+12$

- a) Interpret  $R^2 = 0.71$  in context.
- b) Which athlete's performance does the model most severely overestimate?
- c) Predict the score for an athlete training 15 hours/week.
- d) Predict the score for an athlete training 40 hours/week.



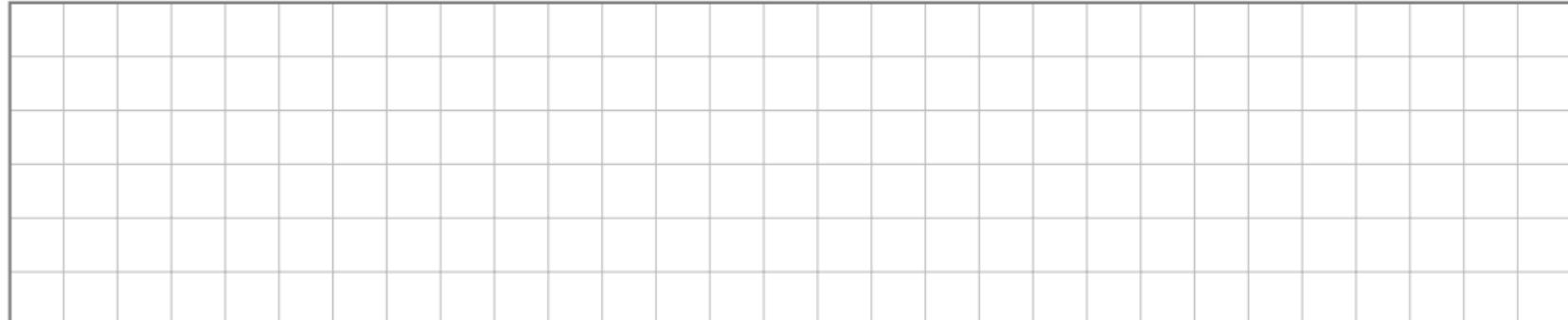
## Example 5.16: Fitness App Data

---

**Context:** A fitness app tracked 50 users over 12 weeks to understand the relationship between weekly workout sessions and weight loss (kg).

|                    | Sessions/week    | Weight loss (kg) |
|--------------------|------------------|------------------|
| Mean               | $\bar{x} = 3.50$ | $\bar{y} = 4.20$ |
| Standard deviation | $s_x = 1.41$     | $s_y = 1.68$     |

The regression equation is  $\hat{y} = 0.63 + 1.02x$ . Find  $R^2$  for this linear model.



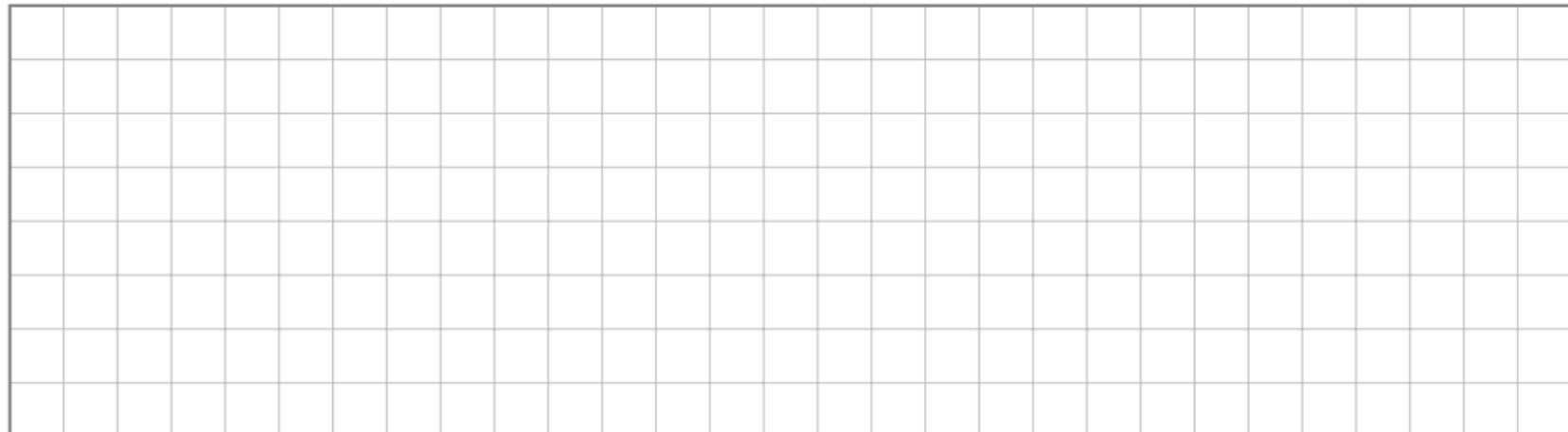
## Example 5.17: Height and Shoe Size (Part 1)

---

**Context:** A researcher studies the relationship between height (in inches) and shoe size (US men's sizing) among college students. After collecting data, they obtain the following least squares regression line:

$$\text{Height} = 50 + 2.5 \times (\text{Shoe Size})$$

(a) Suppose the residual for a particular observation is 1 inch and the observed height is 74 inches. What is the shoe size of this student? Show your work.

A large, empty grid consisting of 10 columns and 10 rows of small squares, intended for students to show their work for the problem.

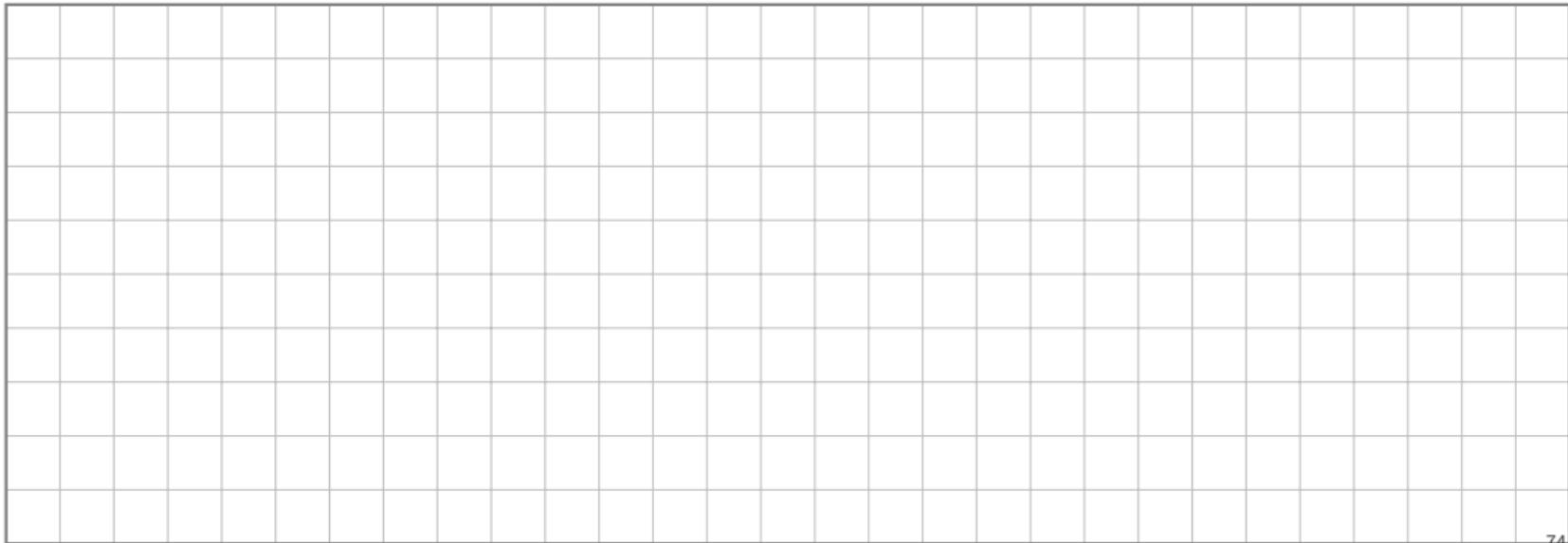
## Example 5.17: Height and Shoe Size (Part 2)

---

**Context:** Continuing with the regression line:

$$\text{Height} = 50 + 2.5 \times (\text{Shoe Size})$$

(b) If the mean height of the sampled students is 66.67 inches, what is the mean shoe size? Show your work.

A large, empty grid for working out the problem. It consists of 10 columns and 10 rows of small squares, providing a space for calculations and drawing.

## Example 5.17: Height and Shoe Size (Part 3)

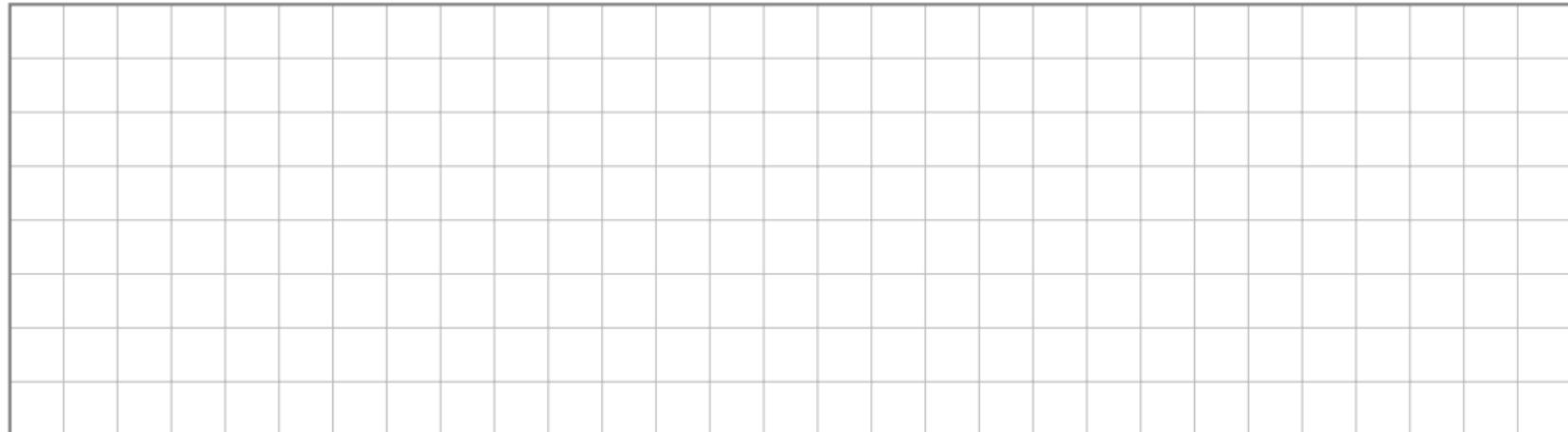
---

**Context:** Using the same data, the researchers found that the least squares regression line for predicting shoe size from height is:

$$\text{Shoe Size} = -3.2 + 0.16 \times (\text{Height})$$

**(c)** Calculate the correlation coefficient ( $r$ ) between height and shoe size. Show your work.

**Hint:** Consider the relationship between the two slopes and the correlation coefficient.



## Example 5.17: Height and Shoe Size (Part 4)

---

(d) If we measure height in centimeters instead of inches (where 1 inch = 2.54 cm), would the correlation coefficient change? Would the slope of the regression line change? Explain.

Consider both:

- How does a linear transformation affect correlation?
- How does a linear transformation affect the slope?

