Chapter 2

Describing Distributions
with Numbers
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Intended Learning Outcomes

= Compute and interpret measures of

central tendency: mean, median, and
mode

Explain the difference between resistant
and non-resistant measures

Compute and interpret measures of
variability: IQR, variance, and standard
deviation

Construct and interpret standard and
modified boxplots

Identify potential outliers using the
1.5 X IQR rule

Choose appropriate summary statistics
based on distribution shape
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Why Numerical Summaries Matter

Numerical Summary

A numerical summary reduces an entire distribution to a few key numbers that capture its
essential features: where the data is centred and how much it varies.

Two Fundamental Questions:
1. Where is the distribution centred? (Central tendency)

2. How spread out is the distribution? (Variability)
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Indices and Summation

n <——— Stop at index n

g L =T+ T+ T3+ Ty

/\ Add this variable
i =1 <¢—— Start at index 1

& Key Point: The symbol ¥ (capital Greek sigma) is an instruction to add up everything
that follows it.
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Measuring Centre: The Mean

Mean (Average)

The mean of n observations z1, o, ..., x, is the of all values divided by the

EZ B W 2 B e 2
n N n

® oo e
a;“.‘ES

Figure: The mean as a balance point. Data: {1, 3, 4, 12}
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Example (ex:ch2-sum-countries): Calculating a Sum

3
ID
Find Z x; for the countries_visited variable. ac
- 112
=1
215
311
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Example (ex:ch2-sum-books): Calculating a Sum and Mean

Five students reported the number of books they Student |
read last year. e

) 1 3

(a) Find le 2 7

i=1 3 2

(b) Calculate the mean z 4 10

5 5
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Robustness of a Measure

Resistant Measure

A statistical measure is resistant (or robust) if it is not sensitive to the influence of a few
(outliers). A resistant measure focuses on the of the data
rather than the tails.

Why does this matter?

= Real data sometimes contains unusual values (typos, measurement errors, genuinely extreme
cases)

= Choosing the wrong summary can give a misleading picture
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Example: The Mean is Non-Resistant

Ages of five book club members:

22, 25, 28, 30, 32

(a) Calculate the mean age.
(b) A 95-year-old joins. Calculate the new mean.

(c) Does the new mean represent “typical”?
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Measuring Centre: The Mode

Mode
The mode is the value that appears
centre that we can use for

Types of Modality:
= Unimodal: One peak
= Bimodal: Two peaks
= Multimodal: More than two peaks

= No mode: No value repeats

in a dataset. It is the only measure of
data.
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Visualizing Modality

In each histogram, identify the modes:
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Example (ex:ch2-mode): Finding the Mode

For each dataset, identify the mode(s):

Dataset Mode(s)
{4,7,7,7,9,12}

{2,4,6,8,10}

{1,3,3,4,5,6,6,9}

T-shirt sizes: {S, M, L, M, L, XL, L}
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Measuring Centre: The Median

Median
The median is the when data are arranged in order. It divides the
distribution so that of observations fall below and fall above.

Q% Finding the Median
1. Sort the data from smallest to largest.
2. If nis odd: The median is the middle value (position “++).
3. If n is even: The median is the average of the two middle values.
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Example (ex:ch2-median-odd): Finding the Median (Odd n)

Find the median of:

5, 21, 4, 8, 22, 11, 5
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Example (ex:ch2-median-even): Finding the Median (Even n)

Find the median of:

5, 6, 7, 7.5, 7.5, 8, 8, 8
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Visualizing the Median on Histograms

Median Median Median

Left-Skewed Symmetric Right-Skewed

& Key Point: The median divides the area under the histogram in half:
50% of data are to the left, 50% to the right.
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Mean vs. Median and Skewness

Mean Median Mean ~ Median Median Mean
' .

Left-Skewed Symmetric Right-Skewed
Mean < Median Mean > Median
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From Centre to Spread: The Missing Piece

Motivating Question: Consider two datasets with the same mean of 50:

Dataset A:

48, 49, 50, 51, 52

Dataset B

Dataset A

Dataset B:

10, 30, 50, 70, 90

0 20 40 60

& Key Point: The mean alone cannot distinguish these very different distributions. We need

measures of spread to complete the picture.

~

80 100
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Quartiles

Quartiles

Quartiles divide a sorted dataset into four equal parts.

= First Quartile (Q1): 25% of data fall below this value

= Second Quartile (Q2): The median (50% below, 50% above)
= Third Quartile (Q3): 75% of data fall below this value
Quartiles help describe the spread and center of a distribution.

Freq.

Q1

Me

ian

Q,3
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Quartiles

Freq.

Median

Lowest 25% 25% - 50% 50% - 75% Highest 25%
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Quartiles and the Interquartile Range

. Sort the data from smallest to largest.

. Find the Median (Q-).
. If n is odd: Exclude the median value.

= Lower Half: All values strictly below the median.
= Upper Half: All values strictly above the median.

Q3 Calculating Quartiles
1
2
3

4. If n is even: Split the data into two equal halves.
. @Q1: The median of the Lower Half.
. Q3: The median of the Upper Half.

S O
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Example (ex:ch2-quartiles-odd): Computing Quartiles (Odd n)

Find Q1, Q2 (median), and Q3 for:

3, 5, 8, 12, 15, 28, 35
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Example (ex:ch2-quartiles-even): Computing Quartiles (Even n)

Find Q1, Q2 (median), and Q3 for:

2, 4, 7, 9, 10, 12, 15, 18
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The Five-Number Summary

Five-Number Summary

The five-number summary of a variable consists of the following five values, arranged in
order from smallest to largest:

Min Q1 Median Q3 Max

Example: Coffee expenses ($)
3, 5, 8, 12, 15, 28, 35

Find the five-number summary.
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Example (ex:ch2-quartiles-coffee): The Interquartile Range

Interquartile Range (IQR)
The interquartile range (IQR) is the range of the middle of the data:

IQR =

Example: Coffee expenses ($)
3, 5, 8, 12, 15, 28, 35

Compute the IQR.
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Boxplot

Boxplot

A boxplot is a graphical summary of a dataset based on the five-number summary:
= The box spans from the first quartile (Q1) to the third quartile (Q3).

= A line inside the box marks the median.

= Whiskers extend from the box to the minimum and maximum values.

Min Q1 Median Q3 Max

[ Ll

.
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Example (ex:ch2-boxplot): Drawing a Boxplot

Data:
5. 10, 14, 16, 18, 20, 25, 30, 40, Five-Number Summary:
45, 60, 83 = Min =
= Q=
= Median =
. Qs =

= Max =
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Example (ex:ch2-commute-outliers): The Challenge with Boxplots

Data (minutes):

12, 15, 18, 20, 22, 22, 25, 28, 30, 32, 35, 38, 40, 42, 45, 48, 50, 52, 55,

160
— ] |
1
® 0 000 0 000 0 000 0 000 0 L]
L I I I I I I I I \
f T T T T T T T T 7
0 20 40 60 80 100 120 140 160

Commute Time (minutes)
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Identifying Outliers: The 1.5 x IQR Rule

Potential Qutliers

A value is a potential outlier if it falls more than beyond the quartiles:
= Lower Fence: (); — 1.5 x IQR

= Upper Fence: Q3 + 1.5 x IQR

Any value the lower fence or the upper fence is flagged as an outlier.

&b This choice ‘1.5" IQR is arbitrary and was popularized by John Tukey in the 1970s. Other
methods for identifying outliers exist.
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Modified Boxplot

Modified Boxplot

A modified boxplot

= displays potential outliers as and

= its whiskers extend only to the most extreme values within the fences.
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Example (ex:ch2-commute-outliers): Modified Boxplot (Daily
Commute Times)

Data (minutes):

12, 15, 18, 20, 22, 22, 25, 28, 30, 32, 35, 38, 40, 42, 45, 48, 50, 52, 55,
160

0 20 40 60 80 100 120 140 160

~

Commute Time (minutes)
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Standard vs. Modified Boxplot

Sandard T |
Modied T3 .

00 ce0 0000000000000 .

~

0 20 40 60 80 100 120 140 160

Commute (min)
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Example (ex:ch2-outliers-both): Modified Boxplot with Two Outliers

Draw a modified boxplot for the following data:

5, 45, 48, 50, 52, 55, 58, 60, 62, 110
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Example (ex:ch2-boxplot-comparison): Comparing Distributions with
Boxplots
Who sleeps more?

{1

N

Hours of Sleep

Female Male
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Example (ex:ch2-boxplot-same-iqr): Comparing Exam Scores: Two
Classes
Same spread, different centres

Context: Final exam scores (out of 100) for two statistics classes.

A

90 A _T_

[e]
o
!

~
o
!

1

Exam Score

()]
o
!

1
o
L

Class A Class B
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Example (ex:ch2-boxplot-commute): Comparing Commute Times
vs. Suburb

Different centres, different spreads, with outliers

: City

Context: Daily commute times (minutes) for workers in two locations.

AN
100 | °
[ ]
E 80 |
E T
£ 60 |
=
]
=40‘ J_ —l_
g
§ 20
© 1
0_

City Suburb

37/70



Limitation: Same Boxplot, Different Distributions
Boxplots hide details about distribution shape

— | — — | —
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ N 00 (1] [ ] (1] (1] R
2 4 6 8 10 2 4 6 8 10

& Key Point: Two very different distributions can produce identical boxplots
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Reading a Boxplot: Centre, Spread, and Outliers
A boxplot reveals all three key features at once

105 .

8

6 _[- <

4 <
2
<

2 l

p Key Point: A single boxplot shows where the data is centred, how spread out it is, and
identifies potential outliers.
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Example (ex:ch2-boxplot-features): Practice Reading a Boxplot
Daily study time (minutes) for 50 students

o | —] o

~

(a) What is the median study time? (c) Identify the outliers.

(b) What is the IQR? (d) Is the distribution symmetric?
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Distribution Shape: Left Skewed

~
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Distribution Shape: Symmetric

~
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Distribution Shape: Right Skewed

~
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Distribution Shape: Right Skewed with Outlier

~
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Limitation: Boxplots
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Beyond Quartiles: A More Precise Measure of Spread

The IQR tells us about the middle 50% of data.
We could, alternatively

Limitation of IQR: L
Q . = Measure how far each observation is from
= Ignores 50% of observations the centre
= Average these distances
= This results in the standard deviation

&P Key Point: The standard deviation uses all data points to quantify spread, making it a
more comprehensive (but less resistant) measure.
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Measuring Variability: Deviation

Deviation
A deviation is the difference between an observation and the

deviation = z; — T
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Example (ex:ch2-deviations): Visualizing Deviations from the Mean

Data:
102\
2, 4, 5,7, 9
8 4
Mean: z =54
x; Deviation 6 T
2 L e l """ ¥ T
4
4
5
7
9 21
0 >
Ty o 3 T4 5
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Measuring Variability: Variance

Variance
The variance measures the average squared deviation from the mean

We divide by n — 1 (not n) to get an unbiased estimate of the population variance.
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Example (ex:ch2-variance): Computing Variance

Data:
2, 4,5, 7,9

Mean: £ =54

Find the variance.
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Example (ex:ch2-variance2): Variance Practice

Find the variance for the following dataset

8y By Ty B, i8
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Measuring Variability: Standard Deviation

Standard Deviation
The standard deviation is the of the variance:

It has the same as the original data, making it more interpretable than variance.
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Example (ex:ch2-standard-deviation): Computing Standard Deviation

Find the standard deviation for the following data

2, 4, 5,7, 9
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Example (ex:ch2-two-groups): Same Mean, Different Spread

Two sections of a statistics course have quiz scores:

Section A: Section B:
73, 74, 75, 76, T7 60, 70, 75, 80, 90
Mean = Mean =
s = s~
Section B
[ ] [ ] [ ] [ J [ J
Section A
00000

v

60 65 70 75 80 85 90
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Properties of Standard Deviation

&P Key Point: The standard deviation satisfies the following properties:
= 5> 0; s =0 only if all values are equal
= Adding/subtracting a constant does not change s

= Multiplying all values by k changes s to |k|s

Case A: Variation 1
1
1
s>0 *—9oo— ) —0—‘0—0—)|
e ; !
: z+ec \l/Jr( Ii \LX k
Case B: All Equal 1
1

All values are equal

S;O
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Example (ex:ch2-adding-constant): Adding a Constant to All Values

Original scores:
65, 70, 75, 80, 85

Mean = 75
s~ 7.91

After adding 10 points:
75, 80, 85, 90, 95

Mean = 85

S
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Choosing Measures of Centre and Variability

Median & IQR Mean & Standard Deviation

Use when distribution is skewed or when Use when distribution is symmetric

outliers are present. without outliers.
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Example (ex:ch2-nba-salaries): NBA Player Salaries (2024-25)

The histogram below shows the distribution of NBA player salaries for the 2024-25 season
(n = 450 players).

Summary Statistics:
Mean: $10.2M
Median: $4.5M

SD: $11.8M

IQR: $12.1M

(a) Is this distribution symmetric or skewed?

0 1o 2 30 40 5 (b) Which measures should we report?
Salary ($ millions) Centre:

Spread:
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Example (ex:ch2-marathon): Boston Marathon Finishing Times (2024)

Context: Finishing times (hours) for 500 randomly sampled runners from the 2024 Boston
Marathon.

Summary Statistics:
Mean: 3.72 hrs
Median: 3.68 hrs
SD: 0.48 hrs

IQR: 0.65 hrs

(a) Is this distribution symmetric or skewed?

25 30 35 40 45 (b) Which measures should we report?
Finishing Time (hours) Centre:

Spread:
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Example (ex:ch2-bimodal-symmetric): Bimodal Symmetric Distribution

A combined sample of test scores (out of 100) from two sections of a course is shown below:

Summary Statistics:
Mean: 80.0

Median: 80.0

Mode: 72 and 90 (bimodal)
SD: 9.4

(a) Describe the shape.

0 o 80 8 9 (b) What might explain this pattern?

Test Score

(c) Which statistics are appropriate?
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Example (ex:ch2-symmetric-outliers): Symmetric Distribution with
Outliers

A class of students took an exam, and their scores (out of 100) are shown below:

Summary Statistics:
Mean: 81.0

Median: 86.0

SD: 19.8

IQR: 16.0

0 20 o & o (b) Identify the outlier.
Exam Score

(c) Which statistics should we report?
Centre:

Spread:

(a) Describe the shape of the distribution.
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Example (ex:ch2-symmetric-both-outliers): Symmetric Distribution
with Outliers on Both Sides

Daily step counts with extreme values

A fitness tracker recorded daily step counts for a group of individuals over a month.

Summary Statistics:
Mean: 10,913
Median: 10,800

SD: 3,445

IQR: 2,600

(a) Describe the shape of the distribution.

0 s 10 15 20 (b) Identify the outliers.
Steps (thousands)

(c) Which statistics should we report?
Centre:

Spread:
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Example (ex:ch2-home-prices): Toronto Home Prices (December 2025)

Prices ($ thousands) for 15 homes sold in a Toronto neighbourhood.

685, 720, 745, 780, 795, 810, 825, 850, 875, 890, 920, 985, 1050, 1180,
2450

(a) Calculate the five-number summary. (b) Check for outliers using the 1.5xIQR rule.

(c) Which statistics best describe “typical” prices?
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Example (ex:ch2-test-scores): AP Statistics Exam Scores (2024)

A sample of 12 students’ AP Statistics exam scores (out of 100):

72, 75, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91

(a) Calculate the mean and median. (c) Calculate the standard deviation.

(b) What does the relationship between mean (d) Which summary statistics are most
and median suggest about the shape? appropriate?
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Decision Guide: Choosing Summary Statistics

Median & IQR  |[«——No YES

i—YEs—I—No—L

Median & IQR Mean & SD
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Summary: Properties of Statistical Measures

Measures of Centre

Mean (7) Median Mode
Balance point Middle value Most frequent
Non-resistant Resistant Works with categorical data
T T
I I
l l
| |
' !
PAIRS WiTH Pairs WiTH
I I
I I
I I
I I
Std Dev (s) IQR
Avg distance Middle 50%
Non-resistant Resistant

Measures of Spread
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Chapter Summary

Measures of Centre
= Mean () — Balance point; not resistant
= Median — Middle value; resistant
= Mode — Most frequent; works for

categorical

Measures of Spread

= IQR — Q3 — Q; resistant
= Variance (s?) — Avg squared deviation

= Std Dev (s) — V/s2; same units as data

Graphical Summaries

= Five-Number Summary: Min, @1,
Median, @3, Max

= Standard Boxplot: Whiskers to
min/max

= Modified Boxplot: Outliers shown
separately

= 1.5x IQR Rule: Identifies outliers

Choosing Statistics
= Skewed/Outliers = Median & IQR
= Otherwise = Mean & Std Dev
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Exercise: Mean vs. Median

Data: {15,22,29,31,35,42, 88}

(a) Calculate the mean.

(b) Calculate the median.

(c) Which measure better represents the “typical” value? Why?
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Exercise: Outlier Detection

Data:
12, 14, 15, 16, 17, 18, 19, 20, 45

(a) Find Q1, Q3, and IQR.

(b) Calculate the fences.

(c) Are there any outliers? If so, identify them.
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Exercise: Interpreting a Boxplot

A company reports employee salaries with this five-number summary:

Min = $35,000 @Q; = $48,000 Median = $55,000 @3 = $72,000 Max = $250,000

(a) What is the IQR?

(b) Is the distribution symmetric, left-skewed, or right-skewed? Explain.

(c) Should the company report the mean or median salary? Why?
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