

Chapter 12

Introduction to Probability

Intended Learning Outcomes

- Define random phenomena, outcomes, and sample spaces
- Identify and describe events
- Apply the three axioms of probability
- Use the addition rule (disjoint and general)
- Apply the complement rule
- Use Venn diagrams to visualize probabilities
- Distinguish finite and continuous probability models
- Define and interpret random variables

PART 1

From Tables to Probability

Example 12.1: From Chapter 6 to Chapter 12

Recall the flu vaccine study (Example 6.7):

Group	Developed Flu	No Flu	Total
Vaccinated	26	3874	3900
Control	70	3830	3900
Total	96	7704	7800

In Chapter 6, you computed:

- Marginal proportion of flu: $\frac{96}{7800} = 0.0123$
- Conditional proportion of flu given vaccinated: $\frac{26}{3900} = 0.0067$

In Chapter 12 notation:

- $P(\text{Flu}) = 0.0123$ *(probability of flu in the whole study)*
- $P(\text{Flu} \mid \text{Vaccinated}) = 0.0067$ *(probability of flu given vaccinated)*

Why Do We Need Formal Rules?

With contingency tables, we could answer questions like:

- What proportion have the flu?
- What proportion are vaccinated *and* have the flu?
- What proportion are vaccinated *or* have the flu?

But what about more complex situations?

- What if we can't enumerate all outcomes in a table?
- What if outcomes happen in stages (first this, then that)?
- What if we need to combine information from multiple sources?

 Key Point: Probability theory gives us **general rules** that work in any situation, not just contingency tables.

PART 2

Foundations of Probability

Random Phenomena and Outcomes

Random Phenomenon

A **random phenomenon** is any process whose result is uncertain before it occurs.

An **outcome** is a single possible result of a random phenomenon.

Outcome not yet determined:

- Flipping a coin
- Rolling a die
- Drawing a card

Outcome determined but unknown to us:

- A patient's disease status before testing
- Tomorrow's weather
- Whether a randomly selected person is left-handed

Chapter 6 Connection

When you randomly selected a person from a contingency table, you were observing a random phenomenon. The uncertainty about their group membership is what made proportions meaningful.

Sample Space

Sample Space

The **sample space** is the set of **all possible outcomes** of a random phenomenon. We denote it by S .

Notation

We write sets using curly braces: $\{ \}$. The braces hold all possible outcomes without regard to order or duplicates.

Quick examples:

- Flip a coin: $S = \{H, T\}$
- Roll a die: $S = \{1, 2, 3, 4, 5, 6\}$
- Pick a person from the flu study: $S = \{\text{all 7800 participants}\}$

Example 12.2: Writing Sample Spaces

Task: Write the sample space for each random phenomenon.

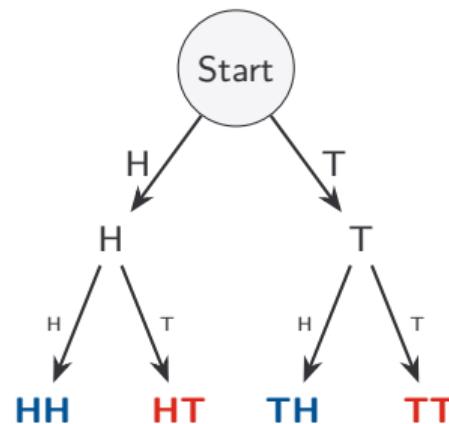
1. Flipping a coin
2. Rolling a six-sided die
3. Flipping a coin twice

A large grid of squares, approximately 20 columns by 15 rows, designed for students to write out the sample spaces for the three phenomena listed above.

Tree Diagrams: Flipping Two Coins

Context: Flip a coin twice. What are all possible outcomes?

Key Point: A **tree diagram** helps visualize all possible outcomes when a random process has multiple steps.



Sample space: $S = \{HH, HT, TH, TT\}$: 4 possible outcomes.

Event

An **event** is a set of outcomes from a sample space.

We rarely care about every outcome individually. Instead, we ask about **events**:

- “At least one head” (when flipping coins)
- “Rolling an even number” (when rolling a die)
- “The person has the flu” (when sampling from the flu study)

Chapter 6 Connection

In contingency tables, each row or column defined an event. “Vaccinated” was an event; “Developed Flu” was an event.

Example 12.3: Writing a Sample Space

Context: Flip a coin three times. Each flip is independent.

1. List all possible outcomes (sequences of flips):
2. Let W = "At least two heads." List the outcomes in W :

A large grid of 12 columns and 10 rows, intended for writing out sequences of coin flips. The grid is composed of thin, light gray lines forming a grid pattern on a white background.

Example 12.4: Identifying Events

Task: In every experiment, list the outcomes belonging to every event.

1. Flip a coin. Event A = "Get heads"
2. Roll a die. Event B = "Roll an even number"
3. Draw a card. Event C = "Draw a face card"
4. Flip two coins. Event D = "At least one tail"

A large, empty grid consisting of 10 columns and 10 rows of small squares, intended for students to write their answers to the task.

Combining Events: “Or” and “And”

Union and Intersection

- **Union** “ A or B ”: All outcomes in A , in B , or in both.
- **Intersection** “ A and B ”: Only outcomes in *both* A and B .

 Caution: In mathematics, “or” is **inclusive**: it means at least one occurs, possibly both. This differs from everyday English where “or” often means “one or the other, but not both.”

Notation:

- **Union:** $A \cup B$ or “ A or B ”
- **Intersection:** $A \cap B$ or “ A and B ”

Example: Union and Intersection with Cards

Context: Draw one card from a standard 52-card deck.

- Event A = “Draw a heart”: 13 outcomes
- Event B = “Draw a face card (J, Q, K)": 12 outcomes

Hearts (13): 2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ A♥

Face cards (12): J♣ Q♣ K♣ J♦ Q♦ K♦ J♠ Q♠ K♠ J♥ Q♥ K♥

Calculate the number of outcomes in each event:

- $A \cap B$ (“heart **and** face card”):
- $A \cup B$ (“heart **or** face card”):

Example 12.5: Combining Events

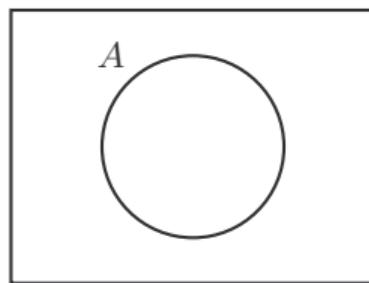
Context: Pavlov has two dogs. Each dog is male (M) or female (F), all combinations equally likely.

1. Sample space S
2. A_1 : "First dog is male"
3. A_2 : "Second dog is male"
4. "At least one male"
5. "Both male"

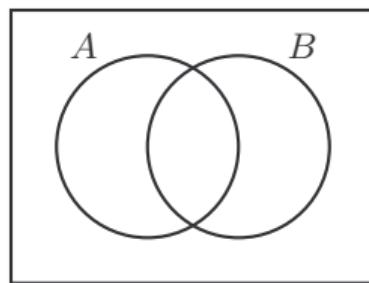
Venn Diagrams: A Visual Tool

Venn Diagram

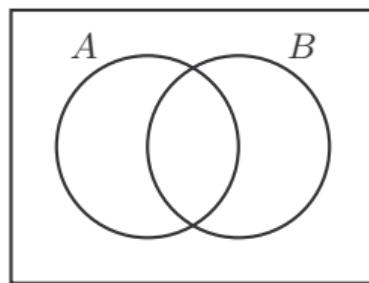
A **Venn diagram** represents events as regions inside a rectangle (the sample space). Overlapping regions show intersections.



Event A



A and B

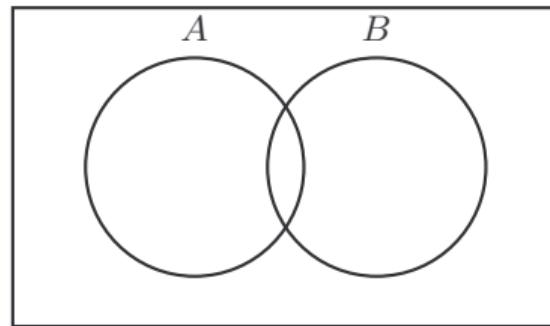


A or B

Example 12.12: Working with Venn Diagrams

Context: In a class of 30 students, 12 like apples (A), 7 like bananas (B), and 3 like both.

1. How many like only apples?
2. How many like only bananas?
3. How many like neither?



PART 3

Rules of Probability

What Is Probability?

Probability

The **probability** of an event is a number between 0 and 1 that measures how likely the event is to occur.

Three paradigms of probability:

1. **Classical:** Count equally likely outcomes.

Example: Fair die: each face has probability $\frac{1}{6}$.

2. **Empirical:** Use long-run relative frequencies.

Example: Track 1000 coin flips; proportion of heads ≈ 0.5 .

3. **Subjective:** Based on personal judgment.

Example: "I think there's a 70% chance it rains tomorrow."

Chapter 6 Connection

When you computed proportions from contingency tables, you were using the **empirical** approach: relative frequencies from observed data.

Example 12.6: Classical Probability

 Key Point: When outcomes are equally likely:

$$P(\text{event}) = \frac{\text{number of outcomes in event}}{\text{total number of outcomes}}$$

Calculate:

- $P(\text{rolling a 4})$
- $P(\text{rolling an even number})$
- $P(\text{rolling greater than 4})$

Example 12.7: When Outcomes Are Not Equally Likely

Context: A novelty die is weighted so that 6 appears twice as often as any other number. All other faces are equally likely.

1. Find $P(6)$:
2. Find $P(\text{even number})$:
3. Find $P(\text{not a } 6)$:

Which paradigm do we use?

Which paradigm do we use in practice?

- **Empirical:** When we have data (contingency tables, surveys, experiments), we use observed proportions.
- **Classical:** When outcomes are equally likely (dice, cards, lotteries), we count outcomes.

In our course, we will only use the empirical and classical paradigms.

Convention

When no information suggests otherwise, assume equally likely outcomes.

The Three Axioms of Probability

Axioms of Probability

A1: For any event A : $0 \leq P(A) \leq 1$.

A2: The probability of the entire sample space is 1: $P(S) = 1$.

A3: If A and B are **mutually exclusive** (cannot both occur), then

$$P(A \text{ or } B) = P(A) + P(B)$$

Example 12.8: Applying the Axioms

Context: A lottery draws a three-digit number from 000 to 999. Each is equally likely.

- Total outcomes:
- Probability of each outcome:

Find:

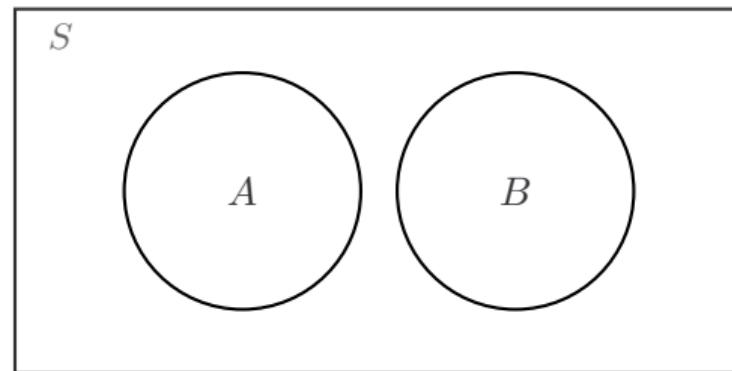
1. $P(\text{all three digits equal})$
2. $P(\text{number} < 500)$
3. $P(\text{number ends in 7})$

A large grid of squares, approximately 10 columns by 10 rows, intended for students to work out their calculations for the three probability problems listed above.

Mutually Exclusive Events

Mutually Exclusive (Disjoint)

Two events are **mutually exclusive** if they cannot both occur. They share no outcomes.



Example: Rolling a die: “Roll a 2” and “Roll a 5” are mutually exclusive.

Example 12.9: Checking Mutual Exclusivity

Context: Roll a fair six-sided die. Determine if each pair is mutually exclusive.

1. A = "Roll a 2", B = "Roll a 5"

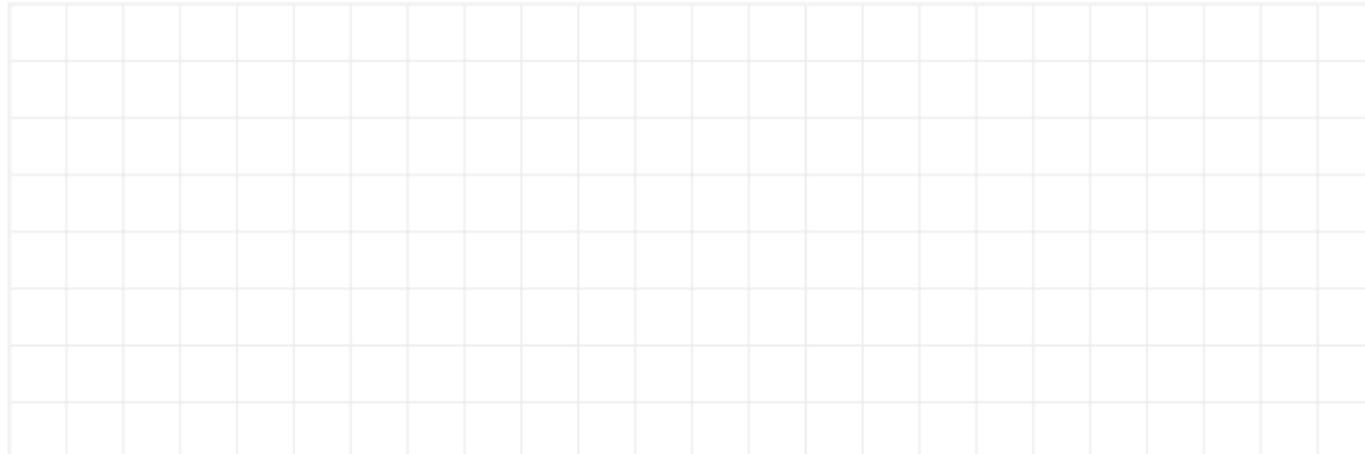
2. A = "Roll an even number", B = "Roll greater than 3"

Addition Rule for Mutually Exclusive Events

 Key Point: If A and B are mutually exclusive:

$$P(A \text{ or } B) = P(A) + P(B)$$

1. Roll a die. Find $P(1 \text{ or } 6)$.
2. Draw a card. Find $P(\text{heart or spade})$.



Addition Rule

Theorem: *Addition rule for multiple mutually exclusive events*

If A_1, A_2, \dots, A_n are all mutually exclusive, then

$$P(A_1 \text{ or } \dots \text{ or } A_n) = P(A_1) + \dots + P(A_n)$$

Example 12.10: General Addition Rule Example

Context: A class has 100 students. 60 students own a laptop, 40 students own a tablet, and 20 students own both.

	Tablet	No Tablet	Total
Laptop	20	40	60
No Laptop	20	20	40
Total	40	60	100

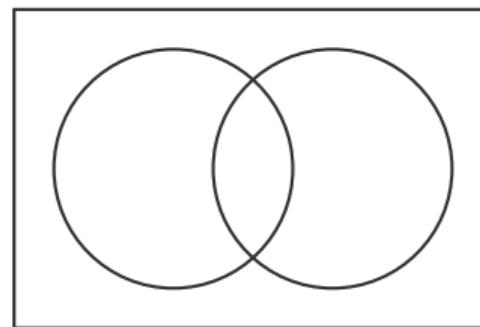
Find: $P(\text{Laptop or Tablet})$

The General Addition Rule

Addition Rule (General)

For **any** two events A and B :

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$



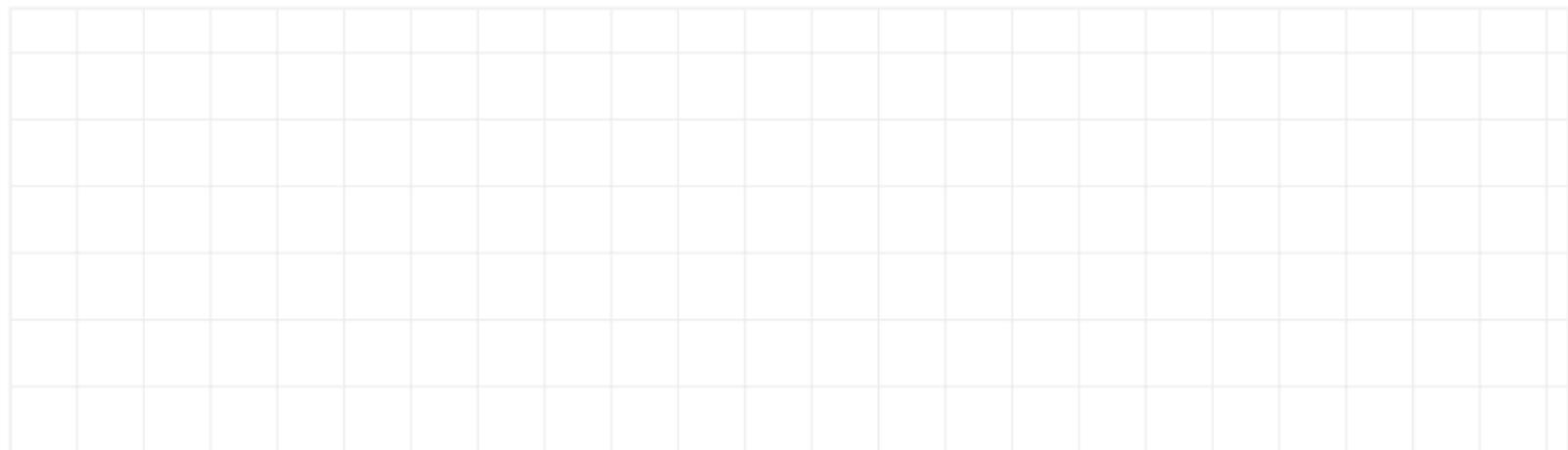
Key Point: We subtract $P(A \text{ and } B)$ because when A and B overlap, adding $P(A) + P(B)$ counts the overlap **twice**.

Example 12.13: Movie Nights

Context: At a movie night with 300 attendees:

- 120 watched a comedy (A)
- 150 watched a drama (B)
- 60 watched both a comedy and a drama ($A \cap B$)

Find: What is the probability that a randomly selected attendee watched a **comedy or a drama**?



The Complement of an Event

Complement

The **complement** of event A , written \bar{A} or A^c , is the event that A does **not** occur.

Find the complement for each event:

1. A = "roll a 2" on a die.
2. B = "get at least one head in 3 coin flips".
3. C = "draw a heart from a deck".

The Complement Rule

Complement Rule

For any event A ,

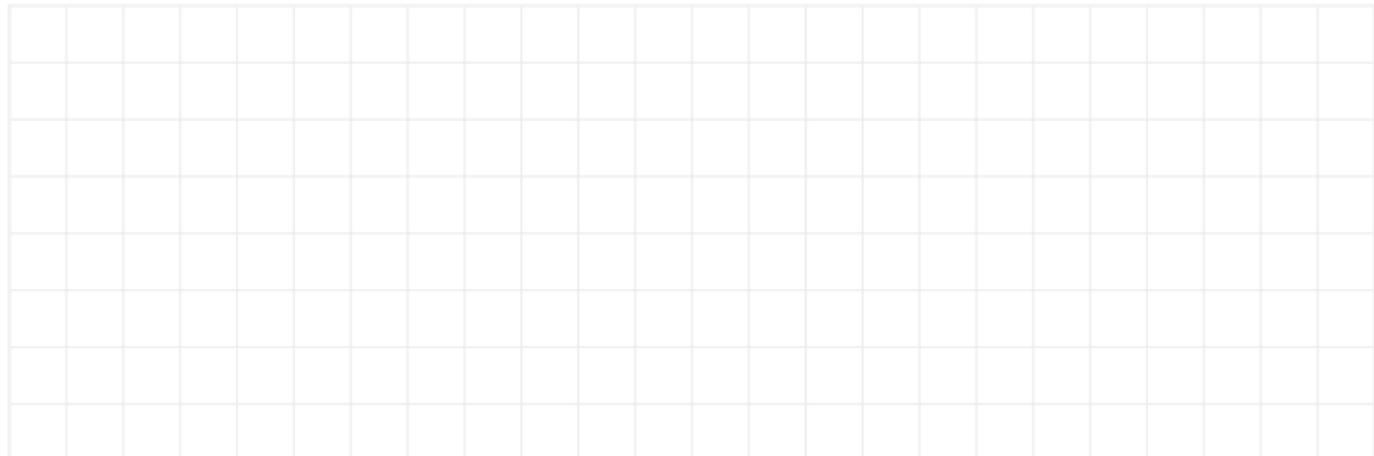
$$P(\overline{A}) = 1 - P(A)$$

Example: Tossing a coin 3 times. Event A = “At least one head in 3 flips”

Example 12.11: Using the Complement Rule

Context: Roll a fair six-sided die.

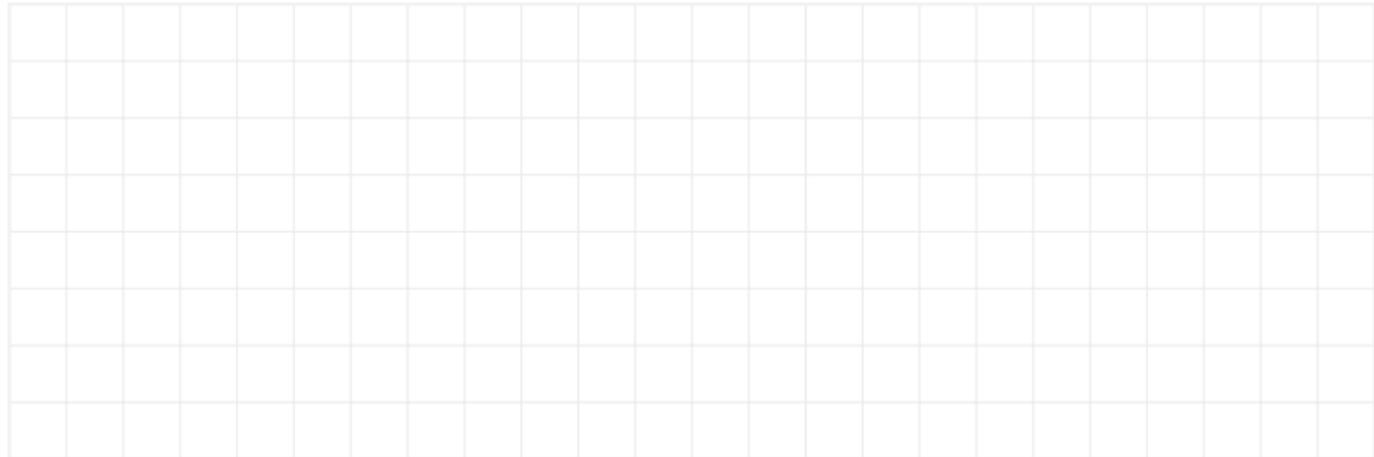
1. $A =$ rolling a 2. Find $P(\bar{A})$:
2. $B =$ rolling less than 4. Find $P(\bar{B})$:

A large 10x10 grid of squares, intended for students to use as a workspace to calculate the probabilities for the given events A and B.

Example 12.11: Using the Complement Rule

Context: Roll a fair six-sided die.

1. Let $C = \text{"roll an even number"}$ and $D = \text{"roll greater than 3"}$. Find $P(C \cup D)$ and $P(\overline{C \cup D})$:

A large, empty grid consisting of 20 columns and 10 rows of small squares, intended for students to work out their calculations for the problem.

PART 4

Probability Models & Random Variables

Two Types of Probability Models

Finite Probability Model

A model whose sample space has a **finite number** of outcomes. We can list every outcome and its probability.

Continuous Probability Model

A model whose sample space is **continuous**: outcomes can take any value in an interval. We describe probabilities using a density curve.

Quick Test

Ask: "Can I list every possible outcome?"

- **Yes** → finite (e.g., number of children, die roll)
- **No** → continuous (e.g., height, time, temperature)

Finite or Continuous?

Task: Classify each scenario.

- Height of a person:
- Number of cars sold:
- Time to run a mile:
- Number of siblings:

- Goals in a hockey game:
- Body temperature:
- Eggs in a carton:
- Gas remaining in tank:

Example 12.14: A Finite Probability Model

Context: "How many cups of coffee have you had today?"

Cups (X)	0	1	2	3	4	5+
Probability	0.40	0.22	0.15	0.10	0.07	0.06

1. Verify this is a valid probability model and find
2. $P(X < 4)$ = "fewer than 4 cups"
3. $P(X \geq 1)$ = "at least one cup"

Exercise: Completing a Probability Model

Context: A discrete random variable Y has the following distribution. One probability is missing.

Value (Y)	10	20	30	40
Probability	0.15	0.30	?	0.10

Find the probability that $Y = 30$.

Random Variable

A **random variable** assigns a **numerical value** to each outcome of a random phenomenon.

The **probability distribution** describes which values are possible and how likely each is.

Examples:

- X = number shown when rolling a die
- Y = number of heads in 10 coin flips
- Z = height (in cm) of a randomly selected student

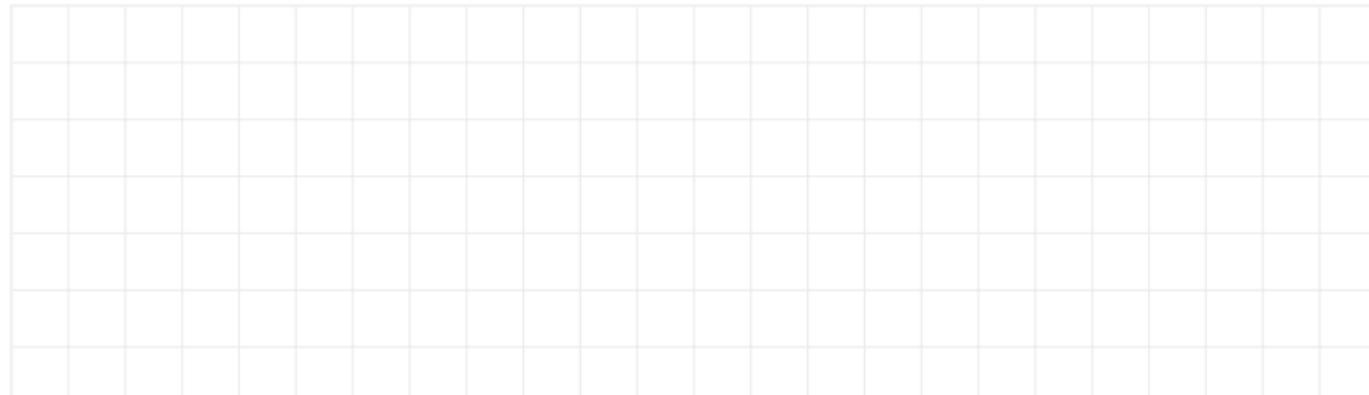
 Caution: Random variables must be **numerical**. “Favourite colour” is not a random variable (it’s categorical). But we could define $X = 1$ if blue, $X = 0$ otherwise.

Example 12.15: A Discrete Random Variable

Context: Let X = number of countries visited by a randomly selected DS1000 student.

Countries	0	1	2	3	4	5	...
Count	3	6	18	33	25	24	...
Proportion	0.015	0.029	0.088	0.162	0.123	0.118	...

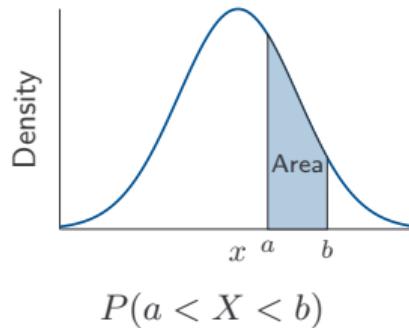
1. $P(X = 3)$:
2. $P(X \leq 2)$:
3. $P(X > 2)$:



Continuous Random Variables

Some facts about continuous random variables:

- Continuous variables take values in an interval (e.g., height, time).
- Probabilities are represented by **area under a density curve**.
- The probability of any single exact outcome is 0.
- We calculate probabilities for intervals:
 $P(a < X < b)$.



We'll come back to continuous random variables after Chapter 13.

CHAPTER 12

Summary

Chapter 12 Summary

Foundations

- **Random phenomenon:** uncertain outcome
- **Sample space S :** all possible outcomes
- **Event:** a set of outcomes
- **Union (or):** at least one occurs
- **Intersection (and):** both occur
- **Complement:** event does not occur

Rules

- **A1:** $0 \leq P(A) \leq 1$
- **A2:** $P(S) = 1$
- **A3 (disjoint):**
$$P(A \cup B) = P(A) + P(B)$$
- **General addition:**
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
- **Complement:** $P(\bar{A}) = 1 - P(A)$

Models

- **Finite:** list outcomes in a table
- **Continuous:** use density curves
- **Random variable:** numerical outcome of a random phenomenon

Looking Back and Looking Ahead

 Key Point: Chapter 6 gave you **intuition** for probability through contingency tables. Chapter 12 gives you **formal rules** that work in any situation.

You Already Know:

- Proportions from tables
- Conditional proportions $P(A | B)$
- Why we subtract overlap
- Complement ("not A")

What's New:

- Formal axioms
- Sample space notation
- Tree diagrams
- Random variable notation

Coming Next

Chapter 13 will focus on **conditional probability** in depth, the formal version of the conditional proportions you computed in Chapter 6.

CHAPTER 12

Practice Problems

Example 12.17: Sample Spaces & Events

Context: A bag contains 3 marbles: Red (R), Green (G), and Blue (B). You draw two marbles one at a time **without replacement**.

Find:

1. List the sample space S . (Hint: use a tree diagram.)
2. Let A = “Red is drawn at some point.” List the outcomes in A .
3. Let B = “Green is drawn first.” List the outcomes in B .
4. Find $P(A)$, $P(B)$, and $P(A \cap B)$.
5. Are A and B mutually exclusive? Justify.



Example 12.18: Venn Diagrams

Context: A survey of 200 university students found:

- 90 use Instagram (I)
- 110 use TikTok (T)
- 50 use both

Find:

1. Fill in all four regions of a Venn diagram with counts.
2. $P(I \cup T)$ (uses Instagram or TikTok)
3. $P(\overline{I \cup T})$ (uses neither)
4. $P(\text{uses exactly one of the two platforms})$

Example 12.19: Finite Probability Models

Context: Let X = number of pets owned by a randomly selected student. The probability distribution is:

Pets (X)	0	1	2	3	4+
Probability	0.18	0.35	0.25	?	0.07

Find:

1. Find $P(X = 3)$.
2. Find $P(X \geq 2)$.
3. Find $P(X < 2)$.
4. Is X a finite or continuous random variable? Justify.



Example 12.20: Weighted Outcomes

Context: A spinner has four sections: Red, Blue, Green, and Yellow. Red is twice as likely as Blue. Green and Yellow are each equally likely as Blue.

Find:

1. Find the probability of landing on each colour.
2. $P(\text{Red or Green})$. Are these events mutually exclusive?
3. $P(\text{not Yellow})$.

Example 12.21: Languages

Context: At a company, $P(\text{speaks French}) = 0.30$, $P(\text{speaks Spanish}) = 0.25$, and $P(\text{speaks French or Spanish}) = 0.45$.

Find:

1. $P(\text{speaks both French and Spanish})$
2. $P(\text{speaks neither French nor Spanish})$
3. Are “speaks French” and “speaks Spanish” mutually exclusive? Justify.

A large grid of squares, approximately 20 columns by 20 rows, intended for working out the solution to the problem.

Example 12.22: Another password

Context: A password consists of one letter (A, B, or C) followed by one digit (1, 2, 3, or 4). All passwords are equally likely.

Find:

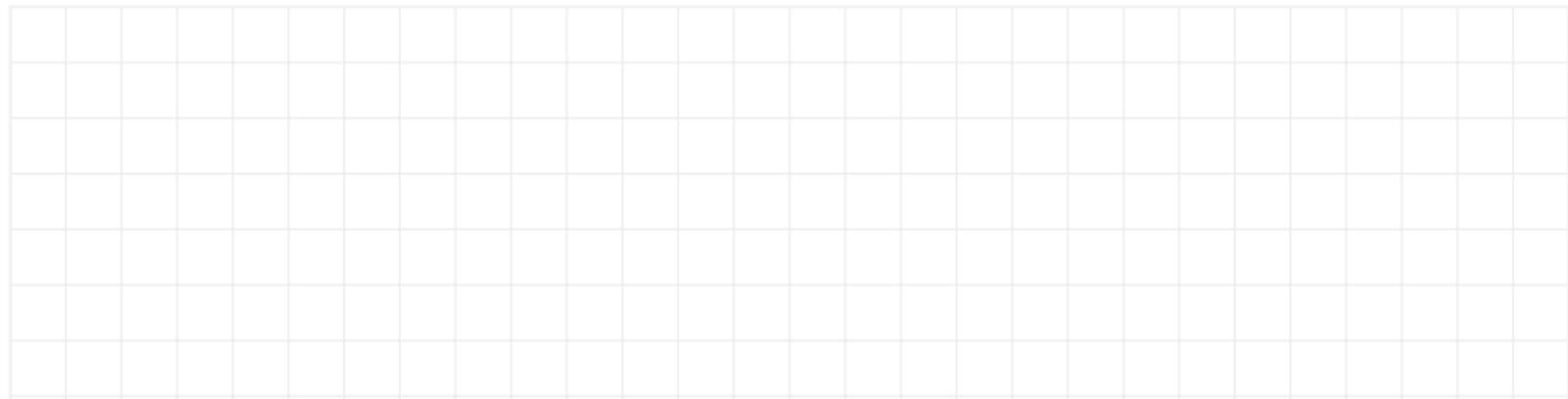
1. How many outcomes are in the sample space?
2. $P(\text{password starts with A})$
3. $P(\text{password contains an even digit})$
4. $P(\text{starts with A or contains an even digit})$
5. $P(\text{does not start with A and contains an odd digit})$

Example 12.23: More events

Context: For events A and B : $P(A) = 0.6$, $P(B) = 0.5$, and $P(\overline{A \cup B}) = 0.1$.

Find:

1. $P(A \cup B)$
2. $P(A \cap B)$
3. $P(\text{exactly one of } A \text{ or } B)$
4. Are A and B mutually exclusive? Justify.

A large grid of squares, approximately 20 columns by 15 rows, intended for students to work out their calculations for the problem.